Single-cell RNA-seq reveals early heterogeneity during aging in yeast

被引:9
作者
Wang, Jincheng [1 ]
Sang, Yuchen [1 ]
Jin, Shengxian [1 ]
Wang, Xuezheng [2 ,3 ,4 ]
Azad, Gajendra Kumar [5 ,6 ]
McCormick, Mark A. [7 ,8 ]
Kennedy, Brian K. [5 ,9 ,10 ]
Li, Qing [2 ,3 ]
Wang, Jianbin [11 ]
Zhang, Xiannian [12 ]
Zhang, Yi [1 ]
Huang, Yanyi [1 ,13 ,14 ]
机构
[1] Peking Univ, Biomed Pioneering Innovat Ctr BIOPIC, Peking Tsinghua Ctr Life Sci, Beijing Adv Innovat Ctr Genom ICG,Sch Life Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Life Sci, State Key Lab Prot & Plant Gene Res, Beijing, Peoples R China
[3] Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing, Peoples R China
[4] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing, Peoples R China
[5] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore, Singapore
[6] Patna Univ, Dept Zool, Patna, Bihar, India
[7] Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, Hlth Sci Ctr, Albuquerque, NM 87131 USA
[8] Autophagy Inflammat & Metab Ctr Biomed Res Excell, Albuquerque, NM USA
[9] Natl Univ Singapore, Yong Loo Lin Sch Med, Hlth Longev Programme, Singapore, Singapore
[10] Natl Univ Hlth Syst, Ctr Hlth Longev, Singapore, Singapore
[11] Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Sch Life Sci, Beijing, Peoples R China
[12] Capital Med Univ, Beijing Adv Innovat Ctr Human Brain Protect, Sch Basic Med Sci, Beijing 100069, Peoples R China
[13] Peking Univ, Coll Chem, Analyt Chem, Beijing, Peoples R China
[14] Shenzhen Bay Lab, Inst Cell Anal, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
early heterogeneity; iron transport; mitochondrial dysfunction; single cell RNA sequencing; yeast aging; GENE-EXPRESSION; IRON; INSTABILITY; RESPONSES; NOISE; LEADS;
D O I
10.1111/acel.13712
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The budding yeast Saccharomyces cerevisiae (S. cerevisiae) has relatively short lifespan and is genetically tractable, making it a widely used model organism in aging research. Here, we carried out a systematic and quantitative investigation of yeast aging with single-cell resolution through transcriptomic sequencing. We optimized a single-cell RNA sequencing (scRNA-seq) protocol to quantitatively study the whole transcriptome profiles of single yeast cells at different ages, finding increased cell-to-cell transcriptional variability during aging. The single-cell transcriptome analysis also highlighted key biological processes or cellular components, including oxidation-reduction process, oxidative stress response (OSR), translation, ribosome biogenesis and mitochondrion that underlie aging in yeast. We uncovered a molecular marker of FIT3, indicating the early heterogeneity during aging in yeast. We also analyzed the regulation of transcription factors and further characterized the distinctive temporal regulation of the OSR by YAP1 and proteasome activity by RPN4 during aging in yeast. Overall, our data profoundly reveal early heterogeneity during aging in yeast and shed light on the aging dynamics at the single cell level.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Single-cell RNA-Seq reveals PBMC profile alterations in a patient following a radiation accident
    Yan, Tao
    Jiang, Zhiqiang
    Tu, Wenling
    Fang, Kai
    Xu, Xiaopeng
    Huang, Wei
    Cao, Jianping
    Zhang, Huojun
    Yu, Daojiang
    Zhang, Shuyu
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2025, 29 (05)
  • [42] Single-cell RNA-seq analysis identifies meniscus progenitors and reveals the progression of meniscus degeneration
    Sun, Hao
    Wen, Xingzhao
    Li, Hongyi
    Wu, Peihui
    Gu, Minghui
    Zhao, Xiaoyi
    Zhang, Ziji
    Hu, Shu
    Mao, Guping
    Ma, Ruofan
    Liao, Weiming
    Zhang, Zhiqi
    ANNALS OF THE RHEUMATIC DISEASES, 2020, 79 (03) : 408 - 417
  • [43] Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos
    Petropoulos, Sophie
    Edsgard, Daniel
    Reinius, Bjorn
    Deng, Qiaolin
    Panula, Sarita Pauliina
    Codeluppi, Simone
    Reyes, Alvaro Plaza
    Linnarsson, Sten
    Sandberg, Rickard
    Lanner, Fredrik
    CELL, 2016, 165 (04) : 1012 - 1026
  • [44] Accounting for technical noise in single-cell RNA-seq experiments
    Brennecke, Philip
    Anders, Simon
    Kim, Jong Kyoung
    Kolodziejczyk, Aleksandra A.
    Zhang, Xiuwei
    Proserpio, Valentina
    Baying, Bianka
    Benes, Vladimir
    Teichmann, Sarah A.
    Marioni, John C.
    Heisler, Marcus G.
    NATURE METHODS, 2013, 10 (11) : 1093 - 1095
  • [45] Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma
    Nian, Zhe
    Wang, Dan
    Wang, Hao
    Liu, Wenxu
    Ma, Zhenyi
    Yan, Jie
    Cao, Yanna
    Li, Jie
    Zhao, Qiang
    Liu, Zhe
    FRONTIERS OF MEDICINE, 2024, 18 (04) : 690 - 707
  • [46] Exponential scaling of single-cell RNA-seq in the past decade
    Svensson, Valentine
    Vento-Tormo, Roser
    Teichmann, Sarah A.
    NATURE PROTOCOLS, 2018, 13 (04) : 599 - 604
  • [47] Determining sequencing depth in a single-cell RNA-seq experiment
    Zhang, Martin Jinye
    Ntranos, Vasilis
    Tse, David
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [48] Advances and challenges in single-cell RNA-seq of microbial communities
    Imdahl, Fabian
    Saliba, Antoine-Emmanuel
    CURRENT OPINION IN MICROBIOLOGY, 2020, 57 : 102 - 110
  • [49] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [50] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    BIOINFORMATICS, 2022, 38 (01) : 164 - 172