Single-cell RNA-seq reveals early heterogeneity during aging in yeast

被引:9
作者
Wang, Jincheng [1 ]
Sang, Yuchen [1 ]
Jin, Shengxian [1 ]
Wang, Xuezheng [2 ,3 ,4 ]
Azad, Gajendra Kumar [5 ,6 ]
McCormick, Mark A. [7 ,8 ]
Kennedy, Brian K. [5 ,9 ,10 ]
Li, Qing [2 ,3 ]
Wang, Jianbin [11 ]
Zhang, Xiannian [12 ]
Zhang, Yi [1 ]
Huang, Yanyi [1 ,13 ,14 ]
机构
[1] Peking Univ, Biomed Pioneering Innovat Ctr BIOPIC, Peking Tsinghua Ctr Life Sci, Beijing Adv Innovat Ctr Genom ICG,Sch Life Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Life Sci, State Key Lab Prot & Plant Gene Res, Beijing, Peoples R China
[3] Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing, Peoples R China
[4] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing, Peoples R China
[5] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore, Singapore
[6] Patna Univ, Dept Zool, Patna, Bihar, India
[7] Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, Hlth Sci Ctr, Albuquerque, NM 87131 USA
[8] Autophagy Inflammat & Metab Ctr Biomed Res Excell, Albuquerque, NM USA
[9] Natl Univ Singapore, Yong Loo Lin Sch Med, Hlth Longev Programme, Singapore, Singapore
[10] Natl Univ Hlth Syst, Ctr Hlth Longev, Singapore, Singapore
[11] Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Sch Life Sci, Beijing, Peoples R China
[12] Capital Med Univ, Beijing Adv Innovat Ctr Human Brain Protect, Sch Basic Med Sci, Beijing 100069, Peoples R China
[13] Peking Univ, Coll Chem, Analyt Chem, Beijing, Peoples R China
[14] Shenzhen Bay Lab, Inst Cell Anal, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
early heterogeneity; iron transport; mitochondrial dysfunction; single cell RNA sequencing; yeast aging; GENE-EXPRESSION; IRON; INSTABILITY; RESPONSES; NOISE; LEADS;
D O I
10.1111/acel.13712
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The budding yeast Saccharomyces cerevisiae (S. cerevisiae) has relatively short lifespan and is genetically tractable, making it a widely used model organism in aging research. Here, we carried out a systematic and quantitative investigation of yeast aging with single-cell resolution through transcriptomic sequencing. We optimized a single-cell RNA sequencing (scRNA-seq) protocol to quantitatively study the whole transcriptome profiles of single yeast cells at different ages, finding increased cell-to-cell transcriptional variability during aging. The single-cell transcriptome analysis also highlighted key biological processes or cellular components, including oxidation-reduction process, oxidative stress response (OSR), translation, ribosome biogenesis and mitochondrion that underlie aging in yeast. We uncovered a molecular marker of FIT3, indicating the early heterogeneity during aging in yeast. We also analyzed the regulation of transcription factors and further characterized the distinctive temporal regulation of the OSR by YAP1 and proteasome activity by RPN4 during aging in yeast. Overall, our data profoundly reveal early heterogeneity during aging in yeast and shed light on the aging dynamics at the single cell level.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Single-cell RNA-Seq and bulk RNA-Seq reveal reliable diagnostic and prognostic biomarkers for CRC
    Zhang, Xing
    Yang, Longkun
    Deng, Ying
    Huang, Zhicong
    Huang, Hao
    Wu, Yuying
    He, Baochang
    Hu, Fulan
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (12) : 9805 - 9821
  • [32] Single-Cell RNA-Seq Reveals Transcriptomic Heterogeneity and Post-Traumatic Osteoarthritis-Associated Early Molecular Changes in Mouse Articular Chondrocytes
    Sebastian, Aimy
    McCool, Jillian L.
    Hum, Nicholas R.
    Murugesh, Deepa K.
    Wilson, Stephen P.
    Christiansen, Blaine A.
    Loots, Gabriela G.
    CELLS, 2021, 10 (06)
  • [33] Single-cell RNA-seq analysis identifies unique chondrocyte subsets and reveals involvement of ferroptosis in human intervertebral disc degeneration
    Zhang, Y.
    Han, S.
    Kong, M.
    Tu, Q.
    Zhang, L.
    Ma, X.
    OSTEOARTHRITIS AND CARTILAGE, 2021, 29 (09) : 1324 - 1334
  • [34] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    CELLS, 2019, 8 (10)
  • [35] Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations
    Nadal-Ribelles, Mariona
    Islam, Saiful
    Wei, Wu
    Latorre, Pablo
    Nguyen, Michelle
    de Nadal, Eulalia
    Posas, Francesc
    Steinmetz, Lars M.
    NATURE MICROBIOLOGY, 2019, 4 (04) : 683 - 692
  • [36] Single-cell RNA-seq and chromatin accessibility profiling decipher the heterogeneity of mouse γδ T cells
    Li, Zhenhua
    Yang, Quanli
    Tang, Xin
    Chen, Yiming
    Wang, Shanshan
    Qi, Xiaojie
    Zhang, Yawen
    Liu, Zonghua
    Luo, Jing
    Liu, Hui
    Ba, Yongbing
    Guo, Lianxia
    Wu, Baojian
    Huang, Fang
    Cao, Guangchao
    Yin, Zhinan
    SCIENCE BULLETIN, 2022, 67 (04) : 408 - 426
  • [37] Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
    Zhu, Xun
    Ching, Travers
    Pan, Xinghua
    Weissman, Sherman M.
    Garmire, Lana
    PEERJ, 2017, 5
  • [38] Single-Cell Heterogeneity of Cutaneous T-Cell Lymphomas Revealed Using RNA-Seq Technologies
    Rassek, Karolina
    Izykowska, Katarzyna
    CANCERS, 2020, 12 (08) : 1 - 15
  • [39] Single-cell RNA-seq reveals the immune escape and drug resistance mechanisms of mantle cell lymphoma
    Wang, Liang
    Mo, Steven
    Li, Xin
    He, Yingzhi
    Yang, Jing
    CANCER BIOLOGY & MEDICINE, 2020, 17 (03) : 726 - 739
  • [40] Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis
    Sebastian, Aimy
    Hum, Nicholas R.
    McCool, Jillian L.
    Wilson, Stephen P.
    Murugesh, Deepa K.
    Martin, Kelly A.
    Rios-Arce, Naiomy Deliz
    Amiri, Beheshta
    Christiansen, Blaine A.
    Loots, Gabriela G.
    FRONTIERS IN IMMUNOLOGY, 2022, 13