Recent progress on graphene-based materials for electromagnetic interference shielding applications

被引:5
作者
Qian Wei [1 ]
He Da-Ping [1 ,2 ]
Li Bao-wen [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
来源
CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING | 2020年 / 48卷 / 07期
关键词
graphene; electromagnetic interference shielding; nanomaterial; multi-layer structure; 3D architecture; CARBON NANOTUBE; BROAD-BAND; ABSORPTION PROPERTIES; THERMAL-CONDUCTIVITY; MICROWAVE-ABSORPTION; WAVE ABSORPTION; OXIDE; LIGHTWEIGHT; COMPOSITES; PERFORMANCE;
D O I
10.11868/j.issn.1001-4381.2019.000914
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The rise of the era of 5G wireless technology and development of flexible electronic devices have highlighted the key role of electromagnetic shielding materials for national defense and civil use. As a new carbon material, graphene has a unique two-dimensional structure showing excellent physical and chemical properties, which endows graphene-based materials light weight, good flexibility, high corrosion resistance and high electromagnetic shielding effectiveness. The shielding principle and the preparation method of graphene-based material were introduced in this review, and the latest advances on the electromagnetic shielding material were summarized, including pure graphene and graphene-based composite material. In addition, prospects for the future development of new graphene-based electromagnetic shielding materials were discussed.
引用
收藏
页码:14 / 23
页数:10
相关论文
共 62 条
[1]  
Acquarelli C, 2014, IEEE INT SYMP ELEC, P488, DOI 10.1109/EMCEurope.2014.6930956
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Graphene oxide co-doped with dielectric and magnetic phases as an electromagnetic wave suppressor [J].
Biswas, Sourav ;
Bhattacharjee, Yudhajit ;
Panja, Sujit Sankar ;
Bose, Suryasarathi .
MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (06) :1229-1244
[4]   Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials [J].
Cao, Mao-Sheng ;
Wang, Xi-Xi ;
Zhang, Min ;
Shu, Jin-Cheng ;
Cao, Wen-Qiang ;
Yang, Hui-Jing ;
Fang, Xiao-Yong ;
Yuan, Jie .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (25)
[5]   Electronic Structure and Electromagnetic Properties for 2D Electromagnetic Functional Materials in Gigahertz Frequency [J].
Cao, Mao-Sheng ;
Shu, Jin-Cheng ;
Wang, Xi-Xi ;
Wang, Xin ;
Zhang, Min ;
Yang, Hui-Jing ;
Fang, Xiao-Yong ;
Yuan, Jie .
ANNALEN DER PHYSIK, 2019, 531 (04)
[6]   The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J].
Cao, Mao-Sheng ;
Song, Wei-Li ;
Hou, Zhi-Ling ;
Wen, Bo ;
Yuan, Jie .
CARBON, 2010, 48 (03) :788-796
[7]   Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion [J].
Cao, Maosheng ;
Wang, Xixi ;
Cao, Wenqiang ;
Fang, Xiaoyong ;
Wen, Bo ;
Yuan, Jie .
SMALL, 2018, 14 (29)
[8]   Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves [J].
Cao, Maosheng ;
Han, Chen ;
Wang, Xixi ;
Zhang, Min ;
Zhang, Yanlan ;
Shu, Jincheng ;
Yang, Huijing ;
Fang, Xiaoyong ;
Yuan, Jie .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (17) :4586-4602
[9]   Temperature dependent microwave absorption of ultrathin graphene composites [J].
Cao, Wen-Qiang ;
Wang, Xi-Xi ;
Yuan, Jie ;
Wang, Wen-Zhong ;
Cao, Mao-Sheng .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (38) :10017-10022
[10]   Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles [J].
Chen, Yinju ;
Li, Yuan ;
Yip, Mingchuen ;
Tai, Nyanhwa .
COMPOSITES SCIENCE AND TECHNOLOGY, 2013, 80 :80-86