Temporal Transferability of Pine Forest Attributes Modeling Using Low-Density Airborne Laser Scanning Data

被引:27
|
作者
Domingo, Dario [1 ]
Alonso, Rafael [2 ,3 ]
Teresa Lamelas, Maria [1 ,4 ]
Luis Montealegre, Antonio [1 ]
Rodriguez, Francisco [2 ,3 ,5 ]
de la Riva, Juan [1 ]
机构
[1] Univ Zaragoza, Dept Geog, GEOFOREST IUCA, Pedro Cerbuna 12, E-50009 Zaragoza, Spain
[2] Fora Forest Technol Sll, Campus Duques de Soria S-N, Soria 42004, Spain
[3] Univ Valladolid, INIA, Sustainable Forest Management Res Inst, Campus Duques de Soria S-N, Soria 42004, Spain
[4] Acad Gen Mil, Ctr Univ Def Zaragoza, Ctra Huesca S-N, Zaragoza 50090, Spain
[5] Univ Valladolid, EU Ingn Agr, Campus Duques de Soria S-N, Soria 42004, Spain
来源
REMOTE SENSING | 2019年 / 11卷 / 03期
关键词
model temporal transferability; ALS; forest inventory; backdating; Mediterranean forest; ESTIMATING TREE HEIGHT; MULTITEMPORAL LIDAR DATA; DISCRETE RETURN LIDAR; BOREAL FOREST; ABOVEGROUND BIOMASS; POINT DENSITY; STAND CHARACTERISTICS; CARBON SINK; PLOT SIZE; ALS DATA;
D O I
10.3390/rs11030261
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study assesses model temporal transferability using airborne laser scanning (ALS) data acquired over two different dates. Seven forest attributes (i.e. stand density, basal area, squared mean diameter, dominant diameter, tree dominant height, timber volume, and total tree biomass) were estimated using an area-based approach in Mediterranean Aleppo pine forests. Low-density ALS data were acquired in 2011 and 2016 while 147 forest inventory plots were measured in 2013, 2014, and 2016. Single-tree growth models were used to generate concomitant field data for 2011 and 2016. A comparison of five selection techniques and five regression methods were performed to regress field observations against ALS metrics. The selection of the best regression models fitted for each stand attribute, and separately for both 2011 and 2016, was performed following an indirect approach. Model performance and temporal transferability were analyzed by extrapolating the best fitted models from 2011 to 2016 and inversely from 2016 to 2011 using the direct approach. Non-parametric support vector machine with radial kernel was the best regression method with average relative % root mean square error differences of 2.13% for 2011 models and 1.58% for 2016 ones.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Regional Modeling of Forest Fuels and Structural Attributes Using Airborne Laser Scanning Data in Oregon
    Mauro, Francisco
    Hudak, Andrew T.
    Fekety, Patrick A.
    Frank, Bryce
    Temesgen, Hailemariam
    Bell, David M.
    Gregory, Matthew J.
    McCarley, T. Ryan
    REMOTE SENSING, 2021, 13 (02) : 1 - 38
  • [2] Using low-density discrete Airborne Laser Scanning data to assess the potential carbon dioxide emission in case of a fire event in a Mediterranean pine forest
    Luis Montealegre-Gracia, Antonio
    Teresa Lamelas-Gracia, Maria
    Garcia-Martin, Alberto
    de la Riva-Fernandez, Juan
    Escribano-Bernal, Francisco
    GISCIENCE & REMOTE SENSING, 2017, 54 (05) : 721 - 740
  • [3] Estimation of Total Biomass in Aleppo Pine Forest Stands Applying Parametric and Nonparametric Methods to Low-Density Airborne Laser Scanning Data
    Domingo, Dario
    Teresa Lamelas, Maria
    Luis Montealegre, Antonio
    Garcia-Martin, Alberto
    de la Riva, Juan
    FORESTS, 2018, 9 (04):
  • [4] Comparison of regression models to estimate biomass losses and CO2 emissions using low-density airborne laser scanning data in a burnt Aleppo pine forest
    Domingo, Dario
    Teresa Lamelas-Gracia, Maria
    Luis Montealegre-Gracia, Antonio
    de la Riva-Fernandez, Juan
    EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 384 - 396
  • [5] MODELING CROWN-BULK DENSITY FROM AIRBORNE AND TERRESTRIAL LASER SCANNING DATA IN A LONGLEAF PINE FOREST ECOSYSTEM
    Silva, Carlos Alberto
    Rocha, Kleydson Diego
    Cosenza, Diogo N.
    Moha, Midhun
    Klauberg, Carine
    Schlickmann, Monique Bohora
    Xia, Jinyi
    Leite, Rodrigo V.
    Almeida, Danilo
    Atkins, Jeff W.
    Cardil, Adrian
    Rowell, Eric
    Parsons, Russ
    Sanchez-Lopez, Nuria
    Prichard, Susan J.
    Hudak, Andrew T.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3094 - 3097
  • [6] Modeling Mediterranean forest structure using airborne laser scanning data
    Bottalico, Francesca
    Chirici, Gherardo
    Giannini, Raffaello
    Mele, Salvatore
    Mura, Matteo
    Puxeddu, Michele
    McRobert, Ronald E.
    Valbuena, Ruben
    Travaglini, Davide
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 57 : 145 - 153
  • [7] Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data
    Tompalski, Piotr
    White, Joanne C.
    Coops, Nicholas C.
    Wulder, Michael A.
    REMOTE SENSING OF ENVIRONMENT, 2019, 227 : 110 - 124
  • [8] Predicting Tree Attributes and Quality Characteristics of Scots Pine Using Airborne Laser Scanning Data
    Maltamo, Matti
    Peuhkurinen, Jussi
    Malinen, Jukka
    Vauhkonen, Jari
    Packalen, Petteri
    Tokola, Timo
    SILVA FENNICA, 2009, 43 (03) : 507 - 521
  • [9] Operational prediction of forest attributes using standardised harvester data and airborne laser scanning data in Sweden
    Soderberg, Jon
    Wallerman, Jorgen
    Almang, Anders
    Moller, Johan J.
    Willen, Erik
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2021, 36 (04) : 306 - 314
  • [10] Predicting Forest Inventory Attributes Using Airborne Laser Scanning, Aerial Imagery, and Harvester Data
    Saukkola, Atte
    Melkas, Timo
    Riekki, Kirsi
    Sirparanta, Sanna
    Peuhkurinen, Jussi
    Holopainen, Markus
    Hyyppa, Juha
    Vastaranta, Mikko
    REMOTE SENSING, 2019, 11 (07)