POSITIVE SOLUTIONS FOR SINGULAR STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS ON THE HALF LINE

被引:0
作者
Xu, Jiafa [1 ]
Yang, Zhilin [1 ]
机构
[1] Qingdao Technol Univ, Dept Math, Qingdao, Shandong, Peoples R China
关键词
Sturm-Liouville problem on the half line; positive solution; fixed point index; spectral radius;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns the existence and multiplicity of positive solutions for the singular Sturm-Liouville boundary value problem (p(t)u'(t))' + h(t)f(t, u(t)) = 0, 0 < t < infinity, au(0) - b lim(t -> 0+) p(t)u'(t) = 0, c lim(t ->infinity) u(t) + d lim(t ->infinity) p(t)u'(t) = 0. We use fixed point index theory to establish our main results based on a priori estimates derived by utilizing spectral properties of associated linear integral operators.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Existence of nonzero nonnegative solutions of Sturm-Liouville boundary value problems and applications [J].
Lan, Kunquan ;
Li, Chongming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 434
[22]   Positive Solutions of Nabla Fractional Sturm-Liouville Problems [J].
Jonnalagadda, Jagan Mohan ;
Valdes, Juan E. Napoles .
BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2025, 51 :50-65
[23]   POSITIVE SOLUTIONS FOR THIRD-ORDER STURM-LIOUVILLE BOUNDARY-VALUE PROBLEMS WITH p-LAPLACIAN [J].
Zhai, Chengbo ;
Guo, Chunmei .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
[24]   Existence of positive solutions for fourth order singular differential equations with Sturm-Liouville boundary conditions [J].
ZHAO ZengqinCollege of Mathematics SciencesQufu Normal UniversityQufu China .
商丘师范学院学报, 2007, (12) :1-8
[25]   A multiplicity result for a singular generalized Sturm-Liouville boundary value problem [J].
Zhang, Youwei .
MATHEMATICAL AND COMPUTER MODELLING, 2009, 50 (1-2) :132-140
[26]   Solutions of sturm-liouville boundary value problems for higher-order differential equations [J].
Liu Y. .
Journal of Applied Mathematics and Computing, 2007, 24 (1-2) :231-243
[27]   Multiplicity and nonexistence of positive solutions to impulsive Sturm–Liouville boundary value problems [J].
Xuxin Yang ;
Piao Liu ;
Weibing Wang .
Boundary Value Problems, 2024
[28]   Existence and unboundedness of positive solutions for singular boundary value problems on half-line [J].
Liu, YS .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 144 (2-3) :543-556
[29]   Existence of positive solutions of nonlinear discrete Sturm-Liouville problems [J].
Atici, FM .
MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (5-6) :599-607
[30]   Positive solutions of Sturm-Liouville boundary value problems for singular nonlinear second-order impulsive integro-differential equation in Banach spaces [J].
Sun, Yan .
BOUNDARY VALUE PROBLEMS, 2012, :1-18