Estimate and monotonicity of the first eigenvalue under the Ricci flow

被引:25
作者
Cao, Xiaodong [1 ]
Hou, Songbo [2 ]
Ling, Jun [3 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] China Agr Univ, Dept Appl Math, Coll Sci, Beijing 100083, Peoples R China
[3] Utah Valley Univ, Dept Math, Orem, UT 84058 USA
基金
美国国家科学基金会;
关键词
FUNCTIONALS; LAPLACIAN;
D O I
10.1007/s00208-011-0740-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first derive a monotonicity formula for the first eigenvalue of on a closed surface with nonnegative scalar curvature under the (unnormalized) Ricci flow. We then derive a general evolution formula for the first eigenvalue under the normalized Ricci flow. As an application, we obtain various monotonicity formulae and estimates for the first eigenvalue on closed surfaces.
引用
收藏
页码:451 / 463
页数:13
相关论文
共 24 条
[1]  
[Anonymous], 1971, LECT NOTES MATH, DOI DOI 10.1007/BFB0064643
[2]   First eigenvalues of geometric operators under the Ricci flow [J].
Cao, Xiaodong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (11) :4075-4078
[3]  
Cao XD, 2007, MATH ANN, V337, P435, DOI 10.1007/s00208-006-0043-5
[4]   Evolution of Yamabe constant under Ricci flow [J].
Chang, Shu-Cheng ;
Lu, Peng .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 31 (02) :147-153
[5]  
Chavel Isaac, 1984, EIGENVALUES RIEMANNI
[6]   THE RICCI FLOW ON THE 2-SPHERE [J].
CHOW, B .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (02) :325-334
[7]  
Chow B., 2007, Mathematical Surveys and Monographs, V135
[8]  
Chow B., 2004, Mathematical Surveys and Monographs, V110
[9]   Laplacian eigenvalue functionals and metric deformations on compact manifolds [J].
El Soufi, Ahmad ;
Ifias, Said .
JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (01) :89-104
[10]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255