Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation

被引:155
作者
Furuta, Kaori Miyashima [1 ]
Yadav, Shri Ram [1 ]
Lehesranta, Satu [1 ]
Belevich, Ilya [1 ]
Miyashima, Shunsuke [1 ]
Heo, Jung-ok [1 ]
Vaten, Anne [1 ]
Lindgren, Ove [1 ]
De Rybel, Bert [2 ,3 ]
Van Isterdael, Gert [2 ,3 ]
Somervuo, Panu [1 ]
Lichtenberger, Raffael [1 ]
Rocha, Raquel [1 ]
Thitamadee, Siripong [1 ]
Tahtiharju, Sari [1 ]
Auvinen, Petri [1 ]
Beeckman, Tom [2 ,3 ]
Jokitalo, Eija [1 ]
Helariutta, Yka [1 ,4 ,5 ]
机构
[1] Univ Helsinki, Inst Biotechnol, Dept Biol & Environm Sci, FIN-00014 Helsinki, Finland
[2] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium
[3] VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium
[4] Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3AX, S Glam, Wales
[5] Univ Cambridge, Sainsbury Lab, Cambridge CB2 1LR, England
基金
欧洲研究理事会; 芬兰科学院;
关键词
PHLOEM; CELL; DIFFERENTIATION; PROTEIN;
D O I
10.1126/science.1253736
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photoassimilates such as sugars are transported through phloem sieve element cells in plants. Adapted for effective transport, sieve elements develop as enucleated living cells. We used electron microscope imaging and three-dimensional reconstruction to follow sieve element morphogenesis in Arabidopsis. We show that sieve element differentiation involves enucleation, in which the nuclear contents are released and degraded in the cytoplasm at the same time as other organelles are rearranged and the cytosol is degraded. These cellular reorganizations are orchestrated by the genetically redundant NAC domain-containing transcription factors, NAC45 and NAC86 (NAC45/86). Among the NAC45/86 targets, we identified a family of genes required for enucleation that encode proteins with nuclease domains. Thus, sieve elements differentiate through a specialized autolysis mechanism.
引用
收藏
页码:933 / 937
页数:5
相关论文
共 19 条
[1]  
BESSIS M, 1952, Rev Hematol, V7, P407
[2]   APL regulates vascular tissue identity in Arabidopsis [J].
Bonke, M ;
Thitamadee, S ;
Mähönen, AP ;
Hauser, MT ;
Helariutta, Y .
NATURE, 2003, 426 (6963) :181-186
[3]   Vascular differentiation and transition in the seedling of Arabidopsis thaliana (Brassicaceae) [J].
Busse, JS ;
Evert, RF .
INTERNATIONAL JOURNAL OF PLANT SCIENCES, 1999, 160 (02) :241-251
[4]   P PROTEIN IN PHLOEM OF CUCURBITA .2. P PROTEIN OF MATURE SIEVE ELEMENTS [J].
CRONSHAW, J ;
ESAU, K .
JOURNAL OF CELL BIOLOGY, 1968, 38 (02) :292-+
[5]   Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure [J].
Denk, W ;
Horstmann, H .
PLOS BIOLOGY, 2004, 2 (11) :1900-1909
[6]   DEVELOPMENT OF PROTOPHLOEM IN ROOTS OF AEGILOPS-COMOSA VAR THESSALICA .2. SIEVE-ELEMENT DIFFERENTIATION [J].
ELEFTHERIOU, EP ;
TSEKOS, I .
PROTOPLASMA, 1982, 113 (03) :221-233
[7]   DEVELOPMENT AND STRUCTURE OF THE PHLOEM TISSUE .2. [J].
ESAU, K .
BOTANICAL REVIEW, 1950, 16 (02) :67-114
[9]   Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues [J].
Imlau, A ;
Truernit, E ;
Sauer, N .
PLANT CELL, 1999, 11 (03) :309-322
[10]   Role of ATG8 and Autophagy in Programmed Nuclear Degradation in Tetrahymena thermophila [J].
Liu, Ming-Liang ;
Yao, Meng-Chao .
EUKARYOTIC CELL, 2012, 11 (04) :494-506