Single-Molecule Nonresonant Wide-Field Surface-Enhanced Raman Scattering from Ferroelectrically Defined Au Nanoparticle Microarrays

被引:10
|
作者
Al-Shammari, Rusul M. [1 ,2 ]
Al-Attar, Nebras [1 ,3 ]
Manzo, Michele [4 ]
Gallo, Katia [4 ]
Rodriguez, Brian J. [1 ,2 ]
Rice, James H. [1 ]
机构
[1] Univ Coll Dublin, Sch Phys, Dublin D04 N2E5, Ireland
[2] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin D04 N2E5, Ireland
[3] Univ Technol Baghdad, Laser & Optoelect Engn Dept, Baghdad 10066, Iraq
[4] KTH Royal Inst Technol, Dept Appl Phys, S-10691 Stockholm, Sweden
来源
ACS OMEGA | 2018年 / 3卷 / 03期
关键词
POWER-LAW ANALYSIS; LITHIUM-NIOBATE; SERS; POLARIZATION; TEMPLATE;
D O I
10.1021/acsomega.7b01285
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-molecule detection by surface-enhanced Raman scattering (SERS) is a powerful spectroscopic technique that is of interest for the sensor development field. An important aspect of optimizing the materials used in SERS-based sensors is the ability to have a high density of "hot spots" that enhance the SERS sensitivity to the single-molecule level. Photodeposition of gold (Au) nanoparticles through electric-field-directed self-assembly on a periodically proton-exchanged lithium niobate (PPELN) substrate provides conditions to form well-ordered microscale features consisting of closely packed Au nanoparticles. The resulting Au nanoparticle microstructure arrays (microarrays) are plasmon-active and support nonresonant single-molecule SERS at ultralow concentrations (<10(-9)-10(-13) M) with excitation power densities <1 x 10(-3) W cm(-2) using wide-field imaging. The microarrays offer excellent SERS reproducibility, with an intensity variation of <7.5% across the substrate. As most biomarkers and molecules do not support resonance enhancement, this work demonstrates that PPELN is a suitable template for high-sensitivity, nonresonant sensing applications.
引用
收藏
页码:3165 / 3172
页数:8
相关论文
共 50 条
  • [21] Probing the structure of single-molecule surface-enhanced Raman scattering hot spots
    Camden, Jon P.
    Dieringer, Jon A.
    Wang, Yingmin
    Masiello, David J.
    Marks, Lawrence D.
    Schatz, George C.
    Van Duyne, Richard P.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (38) : 12616 - +
  • [22] Single-molecule surface-enhanced Raman scattering: Current status and future perspective
    Zee Hwan Kim
    Frontiers of Physics, 2014, 9 : 25 - 30
  • [23] Surface-enhanced non-linear Raman scattering at the single-molecule level
    Kneipp, K
    Kneipp, H
    Itzkan, I
    Dasari, RR
    Feld, MS
    CHEMICAL PHYSICS, 1999, 247 (01) : 155 - 162
  • [24] Optical activity in single-molecule surface-enhanced Raman scattering: Role of symmetry
    Lev Chuntonov
    Gilad Haran
    MRS Bulletin, 2013, 38 : 642 - 647
  • [25] Roadmap for single-molecule surface-enhanced Raman spectroscopy
    Yang Yu
    TingHui Xiao
    Yunzhao Wu
    Wanjun Li
    QingGuang Zeng
    Li Long
    ZhiYuan Li
    Advanced Photonics , 2020, (01) : 24 - 43
  • [26] Roadmap for single-molecule surface-enhanced Raman spectroscopy
    Yang Yu
    Ting-Hui Xiao
    Yunzhao Wu
    Wanjun Li
    Qing-Guang Zeng
    Li Long
    Zhi-Yuan Li
    Advanced Photonics, 2020, 2 (01) : 24 - 43
  • [27] Roadmap for single-molecule surface-enhanced Raman spectroscopy
    Yu, Yang
    Xiao, Ting-Hui
    Wu, Yunzhao
    Li, Wanjun
    Zeng, Qing-Guang
    Long, Li
    Li, Zhi-Yuan
    ADVANCED PHOTONICS, 2020, 2 (01):
  • [28] Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles
    Patra, Partha Pratim
    Chikkaraddy, Rohit
    Tripathi, Ravi P. N.
    Dasgupta, Arindam
    Kumar, G. V. Pavan
    NATURE COMMUNICATIONS, 2014, 5
  • [29] Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles
    Partha Pratim Patra
    Rohit Chikkaraddy
    Ravi P. N. Tripathi
    Arindam Dasgupta
    G. V. Pavan Kumar
    Nature Communications, 5
  • [30] Wide-Field Surface-Enhanced Coherent Anti-Stokes Raman Scattering Microscopy
    Zong, Cheng
    Cheng, Ran
    Chen, Fukai
    Lin, Peng
    Zhang, Meng
    Chen, Zhicong
    Li, Chuan
    Yang, Chen
    Cheng, Ji-Xin
    ACS PHOTONICS, 2022, 9 (03) : 1042 - 1049