A Multi-Kernel Survey for High-Performance Computing

被引:7
|
作者
Gerofi, Balazs [1 ]
Ishikawa, Yutaka [1 ]
Riesen, Rolf [2 ]
Wisniewski, Robert W. [2 ]
Park, Yoonho [3 ]
Rosenburg, Bryan [3 ]
机构
[1] RIKEN Adv Inst Computat Sci, Wako, Saitama, Japan
[2] Intel Corp, Santa Clara, CA 95051 USA
[3] IBM TJ Watson Res Ctr, Yorktown Hts, NY USA
来源
PROCEEDINGS OF THE 6TH INTERNATIONAL WORKSHOP ON RUNTIME AND OPERATING SYSTEMS FOR SUPERCOMPUTERS, (ROSS 2016) | 2016年
关键词
High Performance Computing; Multi kernels; Hybrid kernels;
D O I
10.1145/2931088.2931092
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In HPC, two trends have led to the emergence and popularity of an operating-system approach in which multiple kernels are run simultaneously on each compute node. The first trend has been the increase in complexity of the HPC software environment, which has placed the traditional HPC kernel approaches under stress. Meanwhile, microprocessors with more and more cores are being produced, allowing specialization within a node. As is typical in an emerging field, different groups are considering many different approaches to deploying multi-kernels. In this paper we identify and describe a number of ongoing HPC multi-kernel efforts. Given the increasing number of choices for implementing and providing compute node kernel functionality, users and system designers will find value in understanding the differences among the kernels (and among the perspectives) of the different multi-kernel efforts. To that end, we provide a survey of approaches and qualitatively compare and contrast the alternatives. We identify a series of criteria that characterize the salient differences among the approaches, providing users and system designers with a common language for discussing the features of a design that are relevant for them. In addition to the set of criteria for characterizing multi-kernel architectures, the paper contributes a classification of current multi-kernel projects according to those criteria.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] The marketplace of high-performance computing
    Strohmaier, E
    Dongarra, JJ
    Meuer, HW
    Simon, HD
    PARALLEL COMPUTING, 1999, 25 (13-14) : 1517 - 1544
  • [12] High-Performance Computing with TeraStat
    Bompiani, Edoardo
    Petrillo, Umberto Ferraro
    Lasinio, Giovanna Jona
    Palini, Francesco
    2020 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2020, : 499 - 506
  • [13] Challenges in High-Performance Computing
    Navaux P.O.A.
    Lorenzon A.F.
    Serpa M.S.
    Journal of the Brazilian Computer Society, 2023, 29 (01) : 51 - 62
  • [14] PicoDriver: Fast-path Device Drivers for Multi-kernel Operating Systems
    Gerofi, Balazs
    Santogidis, Aram
    Martinet, Dominique
    Ishikawa, Yutaka
    HPDC '18: PROCEEDINGS OF THE 27TH INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, 2018, : 2 - 13
  • [15] High-Performance Computing MRI Simulations
    Stoecker, Tony
    Vahedipour, Kaveh
    Pflugfelder, Daniel
    Shah, N. Jon
    MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (01) : 186 - 193
  • [16] The Growth of High-Performance Computing in Africa
    Amolo, George O.
    COMPUTING IN SCIENCE & ENGINEERING, 2018, 20 (03) : 21 - 24
  • [17] Taming complexity in high-performance computing
    Oldehoeft, R
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 54 (4-5) : 341 - 357
  • [18] Autotuning in High-Performance Computing Applications
    Balaprakash, Prasanna
    Dongarra, Jack
    Gamblin, Todd
    Hall, Mary
    Hollingsworth, Jeffrey K.
    Norris, Boyana
    Vuduc, Richard
    PROCEEDINGS OF THE IEEE, 2018, 106 (11) : 2068 - 2083
  • [19] High-performance computing in image registration
    Zanin, Michele
    Remondino, Fabio
    Dalla Mura, Mauro
    HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING II, 2012, 8539
  • [20] The promise of high-performance reconfigurable computing
    El-Ghazawi, Tarek
    El-Araby, Esam
    Huang, Miaoqing
    Gaj, Kris
    Kindratenko, Volodymyr
    Buell, Duncan
    COMPUTER, 2008, 41 (02) : 69 - +