Genomic Selection for Crop Improvement

被引:1025
作者
Heffner, Elliot L. [2 ]
Sorrells, Mark E. [2 ]
Jannink, Jean-Luc [1 ]
机构
[1] Cornell Univ, USDA ARS, RW Holley Ctr Agr & Hlth, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Plant Breeding & Genet, Ithaca, NY 14853 USA
关键词
MARKER-ASSISTED SELECTION; RANGE LINKAGE DISEQUILIBRIUM; BREEDING VALUE ESTIMATION; QUANTITATIVE TRAIT LOCI; GENOMEWIDE SELECTION; MOLECULAR MARKERS; GENETIC VALUE; PREDICTION; INFORMATION; EFFICIENCY;
D O I
10.2135/cropsci2008.08.0512
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Despite important strides In marker technologies, the use of marker-assisted selection has stagnated for the improvement of quantitative traits. Biparental mating designs for the detection of loci affecting these traits (quantitative trait loci [QTL]) impede their application, and the statistical methods used are ill-suited to the traits' polygenic nature. Genomic selection (GS) has been proposed to address these deficiencies. Genomic selection predicts the breeding values of lines in a population by analyzing their phenotypes and high-density marker scores. A key to the success of GS is that it Incorporates all marker information In the prediction model, thereby avoiding biased marker effect estimates and capturing more of the variation due to small-effect QTL. In simulations, the correlation between true breeding value and the genomic estimated breeding value has reached levels of 0.85 even for polygenic low heritability traits. This level of accuracy is sufficient to consider selecting for agronomic performance using marker information alone. Such selection Would substantially accelerate the breeding cycle, enhancing gains per unit time. It would dramatically change the role of phenotyping, which would then serve to update prediction models and no longer to select lines. While research to date shows the exceptional promise of GS, work remains to be done to validate it empirically and to incorporate It into breeding schemes.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 90 条
[1]  
Allard R. W., 1964, Crop science, V4, P503, DOI 10.2135/cropsci1964.0011183X000400050021x
[2]   Mendelian sampling terms as a selective advantage in optimum breeding schemes with restrictions on the rate of inbreeding [J].
Avendaño, S ;
Woolliams, JA ;
Villanueva, B .
GENETICS RESEARCH, 2004, 83 (01) :55-64
[3]  
Beavis William D., 1998, P145
[4]   What if we knew all the genes for a quantitative trait in hybrid crops? [J].
Bernardo, R .
CROP SCIENCE, 2001, 41 (01) :1-4
[5]   Prospects for genomewide selection for quantitative traits in maize [J].
Bernardo, Rex ;
Yu, Jianming .
CROP SCIENCE, 2007, 47 (03) :1082-1090
[6]   BETTER SUBSET REGRESSION USING THE NONNEGATIVE GARROTE [J].
BREIMAN, L .
TECHNOMETRICS, 1995, 37 (04) :373-384
[7]   Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars [J].
Breseghello, F ;
Sorrells, ME .
GENETICS, 2006, 172 (02) :1165-1177
[8]   A model selection approach for the identification of quantitative trait loci in experimental crosses [J].
Broman, KW ;
Speed, TP .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 :641-656
[9]   Accuracy of breeding values when using and ignoring the polygenic effect in genomic breeding value estimation with a marker density of one SNP per cM [J].
Calus, M. P. L. ;
Veerkamp, R. F. .
JOURNAL OF ANIMAL BREEDING AND GENETICS, 2007, 124 (06) :362-368
[10]   Epistasis:: too often neglected in complex trait studies? [J].
Carlborg, Ö ;
Haley, CS .
NATURE REVIEWS GENETICS, 2004, 5 (08) :618-U4