The possibility of testing the Einstein Equivalence Principle (EEP) using Two Way Satellite Time and Frequency Transfer (TW) and a Software Defined Receiver (SDR)

被引:0
作者
Tseng, Wen-Hung [1 ]
Matsakis, Demetrios [2 ]
机构
[1] Chunghwa Telecom Co Ltd, Telecommun Labs, Taipei, Taiwan
[2] US Naval Observ, Washington, DC 20392 USA
来源
2017 JOINT CONFERENCE OF THE EUROPEAN FREQUENCY AND TIME FORUM AND IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (EFTF/IFC) | 2017年
关键词
General Relativity; Equivalence Principle; Software Defined Receiver; Two Way Satellite Time Transfer; TWSTT; TWSTFT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Einstein Equivalence Principle (EEP) requires that clocks in free fall, when observed by other clocks in free fall, show no frequency variations. To some approximation, clocks on the surface of the Earth can be considered freely falling in the solar gravitational potential, and one would expect to find no frequency variations between the clocks as the Earth's rotation modulates the potential experienced by each clock. A previous study [1] using GPS satellites yielded an upper limit to an EEP violation of <10(-3), parameterized as a fraction of the expected differential gravitational redshift of a clock pair not in free fall. Upper limits were also found using TW, but these were much higher than with GPS. We investigate the attainable limits of a search for EEP-violation using SDR-enhanced TW, and find a three-sigma uncertainty slightly higher than 10(-4) may be achievable, using optimistic assumptions.
引用
收藏
页码:723 / 727
页数:5
相关论文
共 19 条
[1]  
Ashby N., 2013, WHY THERE IS NOON MI
[2]  
Beirman G.J., 1977, FACTORIZATION METHOD, P47
[3]   Test of Special Relativity Using a Fiber Network of Optical Clocks [J].
Delva, P. ;
Lodewyck, J. ;
Bilicki, S. ;
Bookjans, E. ;
Vallet, G. ;
Le Targat, R. ;
Pottie, P. -E. ;
Guerlin, C. ;
Meynadier, F. ;
Le Poncin-Lafitte, C. ;
Lopez, O. ;
Amy-Klein, A. ;
Lee, W. -K. ;
Quintin, N. ;
Lisdat, C. ;
Al-Masoudi, A. ;
Doerscher, S. ;
Grebing, C. ;
Grosche, G. ;
Kuhl, A. ;
Raupach, S. ;
Sterr, U. ;
Hill, I. R. ;
Hobson, R. ;
Bowden, W. ;
Kronjager, J. ;
Marra, G. ;
Rolland, A. ;
Baynes, F. N. ;
Margolis, H. S. ;
Gill, P. .
PHYSICAL REVIEW LETTERS, 2017, 118 (22)
[4]   NOON-MIDNIGHT RED SHIFT [J].
HOFFMANN, B .
PHYSICAL REVIEW, 1961, 121 (01) :337-&
[5]   Stability improvement of an operational two-way satellite time and frequency transfer system [J].
Huang, Yi-Jiun ;
Fujieda, Miho ;
Takiguchi, Hiroshi ;
Tseng, Wen-Hung ;
Tsao, Hen-Wai .
METROLOGIA, 2016, 53 (02) :881-890
[6]  
Kopeikin S, 2011, RELATIVISTIC CELESTIAL MECHANICS OF THE SOLAR SYSTEM, P1, DOI 10.1002/9783527634569
[7]   TEST OF THE GRAVITATIONAL REDSHIFT EFFECT AT SATURN [J].
KRISHER, TP ;
ANDERSON, JD ;
CAMPBELL, JK .
PHYSICAL REVIEW LETTERS, 1990, 64 (12) :1322-1325
[8]   THE GALILEO SOLAR REDSHIFT EXPERIMENT [J].
KRISHER, TP ;
MORABITO, DD ;
ANDERSON, JD .
PHYSICAL REVIEW LETTERS, 1993, 70 (15) :2213-2216
[9]  
Mamajek E. E., 2015, IAU 2015 Resolution B2, XXIXth IAU General Assembly
[10]  
Matsakis D., 2016, 2016 IEEE INT FREQ C, P1