Normalized random measures with independent increments are a general, tractable class of nonparametric prior. This paper describes sequential Monte Carlo methods for both conjugate and non-conjugate nonparametric mixture models with these priors. A simulation study is used to compare the efficiency of the different algorithms for density estimation and comparisons made with Markov chain Monte Carlo methods. The SMC methods are further illustrated by applications to dynamically fitting a nonparametric stochastic volatility model and to estimation of the marginal likelihood in a goodness-of-fit testing example.
机构:
Univ Bristol, Bristol BS8 1TH, Avon, EnglandUniv British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Andrieu, Christophe
Doucet, Arnaud
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Inst Stat Math, Tokyo, JapanUniv British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Doucet, Arnaud
Holenstein, Roman
论文数: 0引用数: 0
h-index: 0
机构:Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
机构:
Univ Bristol, Bristol BS8 1TH, Avon, EnglandUniv British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Andrieu, Christophe
Doucet, Arnaud
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Inst Stat Math, Tokyo, JapanUniv British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
Doucet, Arnaud
Holenstein, Roman
论文数: 0引用数: 0
h-index: 0
机构:Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada