Linear-Quadratic Time-Inconsistent Mean Field Games

被引:22
作者
Bensoussan, A. [1 ,2 ,3 ]
Sung, K. C. J. [4 ]
Yam, S. C. P. [5 ]
机构
[1] Univ Texas Dallas, Sch Management, Int Ctr Decis & Risk Anal, Richardson, TX 75083 USA
[2] City Univ Hong Kong, Coll Sci & Engn, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[3] Ajou Univ, Grad Dept Financial Engn, Suwon 441749, South Korea
[4] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R China
基金
新加坡国家研究基金会;
关键词
Mean field games; Time-inconsistent stochastic control problems; Adjoint equations; Linear-quadratic type; Banach fixed point theorem;
D O I
10.1007/s13235-013-0090-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a class of time-inconsistent analogs (in the sense of Hu et al. (Time-inconsistent stochastic linear-quadratic control. Preprint, 2012) which is originated from the mean-variance portfolio selection problem with state-dependent risk aversion in the context of financial economics) of the standard Linear-Quadratic Mean Field Games considered in Huang et al. (Commun. Inf. Syst. 6(3):221-252, 2006) and Bensoussan et al. (Linear-quadratic mean field games. http://www.sta.cuhk.edu.hk/scpy, submitted, 2012). For the one-dimensional case, we first establish the unique time-consistent optimal strategy under an arbitrary guiding path, with which we further obtain the unique time-consistent mean-field equilibrium strategy under a mild convexity condition. Second, for the dimension greater than one, by applying the adjoint equation approach, we formulate a sufficient condition under which the unique existence of both, time-consistent optimal strategy under a given guiding path and time-consistent equilibrium strategy, can be guaranteed.
引用
收藏
页码:537 / 552
页数:16
相关论文
共 26 条
  • [11] A survey of nonsymmetric Riccati equations
    Freiling, G
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 351 : 243 - 270
  • [12] MEAN FIELD GAMES EQUATIONS WITH QUADRATIC HAMILTONIAN: A SPECIFIC APPROACH
    Gueant, Olivier
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (09)
  • [13] Mean Field Games and Applications
    Gueant, Oliviier
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    [J]. PARIS-PRINCETON LECTURES ON MATHEMATICAL FINANCE 2010, 2011, 2003 : 205 - 266
  • [14] TIME-INCONSISTENT STOCHASTIC LINEAR-QUADRATIC CONTROL
    Hu, Ying
    Jin, Hanqing
    Zhou, Xun Yu
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (03) : 1548 - 1572
  • [15] Huang MY, 2006, COMMUN INF SYST, V6, P221
  • [16] An invariance principle in large population stochastic dynamic games
    Huang, Minyi
    Caines, Peter E.
    Malhame, Roland P.
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2007, 20 (02) : 162 - 172
  • [17] Large-population cost-coupled LQG problems with nonuniform agents:: Individual-mass behavior and decentralized ε-Nash equilibria
    Huang, Minyi
    Caines, Peter E.
    Malhame, Roland P.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (09) : 1560 - 1571
  • [18] Mean field games. I - The stationary case.
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 343 (09) : 619 - 625
  • [19] Mean field games
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    [J]. JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01): : 229 - 260
  • [20] Mean field games. II - Finite horizon and optimal control.
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 343 (10) : 679 - 684