Global wellposedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity

被引:43
作者
Li, Dong [1 ]
Xu, Xiaojing [2 ,3 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[3] Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
Boussinesq system; global wellposedness; Sobolev spaces; WELL-POSEDNESS; REGULARITY; VISCOSITY; EQUATIONS;
D O I
10.4310/DPDE.2013.v10.n3.a2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a two-dimensional inviscid Boussinesq system with temperature-dependent thermal diffusivity. We prove global wellposedness of strong solutions for arbitrarily large initial data in Sobolev spaces.
引用
收藏
页码:255 / 265
页数:11
相关论文
共 14 条
[1]   Global regularity results for the 2D Boussinesq equations with vertical dissipation [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (06) :1637-1655
[2]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[3]  
Brezis H., 1980, COMMUN PART DIFF EQ, V5, P773, DOI 10.1080/03605308008820154
[4]  
Cannon J., 1980, Lecture Notes in Math., V771, P129
[5]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[6]  
Dong H., ARXIV12070957
[7]   Global Well-Posedness for Euler-Boussinesq System with Critical Dissipation [J].
Hmidi, T. ;
Keraani, S. ;
Rousset, F. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (03) :420-445
[8]   Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation [J].
Hmidi, Taoufik ;
Keraani, Sahbi ;
Rousset, Frederic .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (09) :2147-2174
[9]  
Hou TY, 2005, DISCRETE CONT DYN-A, V12, P1
[10]  
Karch G, 2008, P AM MATH SOC, V136, P879