Bifurcations of limit cycles in a Z2-equivariant planar polynomial vector field of degree 7

被引:13
作者
Li, JB [1 ]
Zhang, MJ
Li, SM
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Kunming Univ Sci & Technol, Ctr Nonlinear Sci Studies, Kunming 650093, Yunnan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2006年 / 16卷 / 04期
基金
中国国家自然科学基金;
关键词
bifurcation; limit cycles; perturbed planar Hamiltonian systems; Hilbert's 16th problem;
D O I
10.1142/S0218127406015210
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the bifurcation theory of planar dynamical systems and the method of detection functions, the bifurcations of limit cycles in a Z(2)-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 7 are studied. An example of a special Z(2)-equivariant vector field having 50 limit cycles with a configuration of compound eyes are given.
引用
收藏
页码:925 / 943
页数:19
相关论文
共 14 条
[1]  
[Anonymous], ACTA MATH SINICA
[2]  
[Anonymous], 2003, QUAL THEOR DYN SYST
[3]  
[Anonymous], P INT C FDN COMP MAT
[4]  
Arnol'd V.I, 1977, FUNCT ANAL APPL+, V11, P85, DOI DOI 10.1007/BF01081886
[5]  
Li J., 1991, PUBL MAT, V35, P487
[6]  
Li J., 2004, J. Dyn. Differ. Equ., V16, P1123
[7]  
LI J, 1992, RES NOTES MATH SERIE, V272, P116
[8]   Hilbert's 16th problem and bifurcations of planar polynomial vector fields [J].
Li, JB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01) :47-106
[9]  
Li JB, 2002, SCI CHINA SER A, V45, P817
[10]  
LLOYD NG, 1988, LONDON MATH SOC LECT, V40, P192