Rates of convergence and asymptotic normality of kernel estimators for ergodic diffusion processes

被引:10
作者
Van Zanten, H [1 ]
机构
[1] Free Univ Amsterdam, Fac Sci, Div W&I, NL-1081 HV Amsterdam, Netherlands
关键词
ergodic diffusions; nonparametric estimation; rate of convergence; asymptotic normality;
D O I
10.1080/10485250108832880
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For ergodic diffusion processes, we study kernel-type estimators for the invariant density, its derivatives and the drift function. We determine rates of convergence and find the joint asymptotic distribution of the estimators at different points.
引用
收藏
页码:833 / 850
页数:18
相关论文
共 12 条
[1]   NONPARAMETRIC IDENTIFICATION FOR DIFFUSION PROCESSES [J].
BANON, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1978, 16 (03) :380-395
[2]  
Gihman I., 1972, STOCHASTIC DIFFERENT
[3]  
Karatzas I, 2014, Brownian Motion and Stochastics Calculus, V113
[4]  
KOROKHOD AV, 1989, ASYMPTOTIC METHODS T
[5]  
Kutoyants Y.A., 1998, Statistical Inference for Stochastic Processes, V1, P131
[6]  
LUCAS A, 1998, STAT INTERFERENCE ST, V1, P29
[7]   DENSITY ESTIMATION IN A CONTINUOUS-TIME STATIONARY MARKOV PROCESS [J].
NGUYEN, HT .
ANNALS OF STATISTICS, 1979, 7 (02) :341-348
[8]   JOINT ASYMPTOTIC DISTRIBUTION OF ESTIMATED REGRESSION FUNCTION AT A FINITE NUMBER OF DISTINCT POINTS [J].
SCHUSTER, EF .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (01) :84-&
[9]  
THAN PD, 1981, MATH OPERATIONSFOR S, V12, P61
[10]  
Van der Vaart A. W., 2000, ASYMPTOTIC STAT, V3