Wide-angle propagating beam analysis for circularly symmetric waveguides: Comparison between FD-BPM and FD-TDM

被引:26
作者
Yamauchi, J
Akimoto, Y
Nibe, M
Nakano, H
机构
[1] College of Engineering, Hosei University, Koganei, Tokyo 184, 3-7-2, Kajino-cho
关键词
D O I
10.1109/68.484252
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The finite difference beam-propagation method (FD-BPM) with a (1,1) Fade approximant operator is formulated for circularly symmetric waveguides, A tapered step-index fiber is analyzed, and the computed field distribution is compared with that from the scalar finite-difference time-domain method (FD-TDM), The present method offers improvement in the evaluation of a radiation-mode field compared with the conventional FD-BPM based on the paraxial approximation.
引用
收藏
页码:236 / 238
页数:3
相关论文
共 14 条
[1]   AN ASSESSMENT OF FINITE-DIFFERENCE BEAM PROPAGATION METHOD [J].
CHUNG, Y ;
DAGLI, N .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (08) :1335-1339
[2]   SIMPLE SPECTRAL METHOD FOR SOLVING PROPAGATION PROBLEMS IN CYLINDRICAL GEOMETRY WITH FAST FOURIER-TRANSFORMS [J].
FEIT, MD ;
FLECK, JA .
OPTICS LETTERS, 1989, 14 (13) :662-664
[3]   MODE-COUPLING IN NONUNIFORM FIBERS - COMPARISON BETWEEN COUPLED-MODE THEORY AND FINITE-DIFFERENCE BEAM-PROPAGATION METHOD SIMULATIONS [J].
GONTHIER, F ;
HENAULT, A ;
LACROIX, S ;
BLACK, RJ ;
BURES, J .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (02) :416-421
[4]   TRANSPARENT BOUNDARY-CONDITION FOR BEAM PROPAGATION [J].
HADLEY, GR .
OPTICS LETTERS, 1991, 16 (09) :624-626
[5]   WIDE-ANGLE BEAM PROPAGATION USING PADE APPROXIMANT OPERATORS [J].
HADLEY, GR .
OPTICS LETTERS, 1992, 17 (20) :1426-1428
[6]   SPLIT-STEP FINITE-ELEMENT METHOD APPLIED TO NONLINEAR INTEGRATED-OPTICS [J].
HAYATA, K ;
MISAWA, A ;
KOSHIBA, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1990, 7 (09) :1772-1784
[7]   A SCALAR FINITE-DIFFERENCE TIME-DOMAIN APPROACH TO GUIDED-WAVE OPTICS [J].
HUANG, WP ;
CHU, ST ;
GOSS, A ;
CHAUDHURI, SK .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (06) :524-526
[8]  
KURODA M, 1992, IEE JAPAN TECH M, P11
[9]   ABSORBING BOUNDARY-CONDITIONS FOR THE FINITE-DIFFERENCE APPROXIMATION OF THE TIME-DOMAIN ELECTROMAGNETIC-FIELD EQUATIONS [J].
MUR, G .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1981, 23 (04) :377-382
[10]  
NAKA Y, 1995, IEICE C361 NAT CONV