Analysis of fully discrete finite element methods for 2D Navier-Stokes equations with critical initial data

被引:14
作者
Li, Buyang [1 ]
Ma, Shu [1 ]
Ueda, Yuki [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo, Japan
关键词
Navier-Stokes equations; L-2 initial data; semi-implicit Euler scheme; finite element method; error estimate; NICOLSON/ADAMS-BASHFORTH SCHEME; SPECTRAL GALERKIN METHOD; ERROR ANALYSIS; NUMERICAL-ANALYSIS; PROJECTION METHODS; CONVERGENCE ANALYSIS; EDDY VISCOSITY; APPROXIMATION; 2ND-ORDER; REGULARITY;
D O I
10.1051/m2an/2022073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First-order convergence in time and space is proved for a fully discrete semi-implicit finite element method for the two-dimensional Navier-Stokes equations with L-2 initial data in convex polygonal domains, without extra regularity assumptions or grid-ratio conditions. The proof utilises the smoothing properties of the Navier-Stokes equations in the analysis of the consistency errors, an appropriate duality argument, and the smallness of the numerical solution in the discrete L-2(0, t(m); H-1) norm when t(m) is smaller than some constant. Numerical examples are provided to support the theoretical analysis.
引用
收藏
页码:2105 / 2139
页数:35
相关论文
共 48 条
[41]  
Shan L, 2013, INT J NUMER ANAL MOD, V10, P943
[42]   ON ERROR-ESTIMATES OF SOME HIGHER-ORDER PROJECTION AND PENALTY-PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS [J].
SHEN, J .
NUMERISCHE MATHEMATIK, 1992, 62 (01) :49-73
[43]   ON ERROR-ESTIMATES OF PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS - 1ST-ORDER SCHEMES [J].
Shen, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :57-77
[44]   COMPACT-SETS IN THE SPACE LP(O, T-B) [J].
SIMON, J .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 146 :65-96
[45]  
Sun HY, 2011, INT J NUMER ANAL MOD, V8, P70
[46]  
THOMEE V, 1984, LECT NOTES MATH, V1054, P1
[47]   Error analysis for a second order scheme for the Navier-Stokes equations [J].
Tone, F .
APPLIED NUMERICAL MATHEMATICS, 2004, 50 (01) :93-119
[48]   Convergence analysis for a higher order scheme for the time-dependent Navier-Stokes equations [J].
Wang, Kun ;
He, Yinnian .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (17) :8269-8278