Analysis of fully discrete finite element methods for 2D Navier-Stokes equations with critical initial data

被引:14
作者
Li, Buyang [1 ]
Ma, Shu [1 ]
Ueda, Yuki [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo, Japan
关键词
Navier-Stokes equations; L-2 initial data; semi-implicit Euler scheme; finite element method; error estimate; NICOLSON/ADAMS-BASHFORTH SCHEME; SPECTRAL GALERKIN METHOD; ERROR ANALYSIS; NUMERICAL-ANALYSIS; PROJECTION METHODS; CONVERGENCE ANALYSIS; EDDY VISCOSITY; APPROXIMATION; 2ND-ORDER; REGULARITY;
D O I
10.1051/m2an/2022073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First-order convergence in time and space is proved for a fully discrete semi-implicit finite element method for the two-dimensional Navier-Stokes equations with L-2 initial data in convex polygonal domains, without extra regularity assumptions or grid-ratio conditions. The proof utilises the smoothing properties of the Navier-Stokes equations in the analysis of the consistency errors, an appropriate duality argument, and the smallness of the numerical solution in the discrete L-2(0, t(m); H-1) norm when t(m) is smaller than some constant. Numerical examples are provided to support the theoretical analysis.
引用
收藏
页码:2105 / 2139
页数:35
相关论文
共 48 条
[1]   Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations [J].
Achdou, Y ;
Guermond, JL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) :799-826
[2]  
Adams R. A., 2003, SOBOLEV SPACES
[3]  
[Anonymous], 1975, General Topology
[4]   Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition [J].
Badia, Santiago ;
Codina, Ramon .
NUMERISCHE MATHEMATIK, 2007, 107 (04) :533-557
[5]   Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework [J].
Badia, Santiago ;
Codina, Ramon .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :2159-2197
[6]  
Baker G., 1976, Galerkin Approximations for the Navier-Stokes Equations
[7]  
BAKER GA, 1982, MATH COMPUT, V39, P339, DOI 10.1090/S0025-5718-1982-0669634-0
[8]   A SECOND ORDER IN TIME MODIFIED LAGRANGE-GALERKIN FINITE ELEMENT METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Bermejo, R. ;
Galan del Sastre, P. ;
Saavedra, L. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) :3084-3109
[9]   Error analysis of non inf-sup stable discretizations of the time-dependent Navier-Stokes equations with local projection stabilization [J].
de Frutos, Javier ;
Garcia-Archilla, Bosco ;
John, Volker ;
Novo, Julia .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) :1747-1786
[10]   POSTPROCESSING FINITE-ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS: THE FULLY DISCRETE CASE [J].
De Frutos, Javier ;
Garcia-Archilla, Bosco ;
Novo, Julia .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) :596-621