SLOW PATCHY EXTREME-ULTRAVIOLET PROPAGATING FRONTS ASSOCIATED WITH FAST CORONAL MAGNETO-ACOUSTIC WAVES IN SOLAR ERUPTIONS

被引:17
作者
Guo, Y. [1 ,2 ]
Ding, M. D. [1 ,2 ]
Chen, P. F. [1 ,2 ]
机构
[1] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanjing Univ, Minist Educ, Key Lab Modern Astron & Astrophys, Nanjing 210023, Jiangsu, Peoples R China
关键词
Sun: corona; Sun: coronal mass ejections (CMEs); Sun: flares; waves; ACTIVE-REGION LOOPS; GLOBAL EUV WAVE; EIT WAVES; MASS EJECTION; MORETON WAVES; MAGNETIC RECONNECTION; SOHO/EIT OBSERVATIONS; NUMERICAL-SIMULATION; SDO/AIA OBSERVATIONS; IMAGING TELESCOPE;
D O I
10.1088/0067-0049/219/2/36
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUV propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.
引用
收藏
页数:16
相关论文
共 81 条
[21]   An Observational Overview of Solar Flares [J].
Fletcher, L. ;
Dennis, B. R. ;
Hudson, H. S. ;
Krucker, S. ;
Phillips, K. ;
Veronig, A. ;
Battaglia, M. ;
Bone, L. ;
Caspi, A. ;
Chen, Q. ;
Gallagher, P. ;
Grigis, P. T. ;
Ji, H. ;
Liu, W. ;
Milligan, R. O. ;
Temmer, M. .
SPACE SCIENCE REVIEWS, 2011, 159 (1-4) :19-106
[22]   Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves" [J].
Gallagher, Peter T. ;
Long, David M. .
SPACE SCIENCE REVIEWS, 2011, 158 (2-4) :365-396
[23]   Determining the 3D Structure of the Corona Using Vertical Height Constraints on Observed Active Region Loops [J].
Gary, G. Allen ;
Hu, Qiang ;
Lee, Jong Kwan ;
Aschwanden, Markus J. .
SOLAR PHYSICS, 2014, 289 (10) :3703-3721
[24]   EUV WAVE REFLECTION FROM A CORONAL HOLE [J].
Gopalswamy, N. ;
Yashiro, S. ;
Temmer, M. ;
Davila, J. ;
Thompson, W. T. ;
Jones, S. ;
McAteer, R. T. J. ;
Wuelser, J-P ;
Freeland, S. ;
Howard, R. A. .
ASTROPHYSICAL JOURNAL LETTERS, 2009, 691 (02) :L123-L127
[25]   MODELING MAGNETIC FIELD STRUCTURE OF A SOLAR ACTIVE REGION CORONA USING NONLINEAR FORCE-FREE FIELDS IN SPHERICAL GEOMETRY [J].
Guo, Y. ;
Ding, M. D. ;
Liu, Y. ;
Sun, X. D. ;
DeRosa, M. L. ;
Wiegelmann, T. .
ASTROPHYSICAL JOURNAL, 2012, 760 (01)
[26]   EVOLUTION OF HARD X-RAY SOURCES AND ULTRAVIOLET SOLAR FLARE RIBBONS FOR A CONFINED ERUPTION OF A MAGNETIC FLUX ROPE [J].
Guo, Y. ;
Ding, M. D. ;
Schmieder, B. ;
Demoulin, P. ;
Li, H. .
ASTROPHYSICAL JOURNAL, 2012, 746 (01)
[27]   The transition region and coronal explorer [J].
Handy, BN ;
Acton, LW ;
Kankelborg, CC ;
Wolfson, CJ ;
Akin, DJ ;
Bruner, ME ;
Caravalho, R ;
Catura, RC ;
Chevalier, R ;
Duncan, DW ;
Edwards, CG ;
Feinstein, CN ;
Freeland, SL ;
Friedlaender, FM ;
Hoffmann, CH ;
Hurlburt, NE ;
Jurcevich, BK ;
Katz, NL ;
Kelly, GA ;
Lemen, JR ;
Levay, M ;
Lindgren, RW ;
Mathur, DP ;
Meyer, SB ;
Morrison, SJ ;
Morrison, MD ;
Nightingale, RW ;
Pope, TP ;
Rehse, RA ;
Schrijver, CJ ;
Shine, RA ;
Shing, L ;
Strong, KT ;
Tarbell, TD ;
Title, AM ;
Torgerson, DD ;
Golub, L ;
Bookbinder, JA ;
Caldwell, D ;
Cheimets, PN ;
Davis, WN ;
Deluca, EE ;
McMullen, RA ;
Warren, HP ;
Amato, D ;
Fisher, R ;
Maldonado, H ;
Parkinson, C .
SOLAR PHYSICS, 1999, 187 (02) :229-260
[28]   Imaging and spectroscopic investigations of a solar coronal wave: Properties of the wave front and associated erupting material [J].
Harra, LK ;
Sterling, AC .
ASTROPHYSICAL JOURNAL, 2003, 587 (01) :429-438
[29]   Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) [J].
Howard, R. A. ;
Moses, J. D. ;
Vourlidas, A. ;
Newmark, J. S. ;
Socker, D. G. ;
Plunkett, S. P. ;
Korendyke, C. M. ;
Cook, J. W. ;
Hurley, A. ;
Davila, J. M. ;
Thompson, W. T. ;
St Cyr, O. C. ;
Mentzell, E. ;
Mehalick, K. ;
Lemen, J. R. ;
Wuelser, J. P. ;
Duncan, D. W. ;
Tarbell, T. D. ;
Wolfson, C. J. ;
Moore, A. ;
Harrison, R. A. ;
Waltham, N. R. ;
Lang, J. ;
Davis, C. J. ;
Eyles, C. J. ;
Mapson-Menard, H. ;
Simnett, G. M. ;
Halain, J. P. ;
Defise, J. M. ;
Mazy, E. ;
Rochus, P. ;
Mercier, R. ;
Ravet, M. F. ;
Delmotte, F. ;
Auchere, F. ;
Delaboudiniere, J. P. ;
Bothmer, V. ;
Deutsch, W. ;
Wang, D. ;
Rich, N. ;
Cooper, S. ;
Stephens, V. ;
Maahs, G. ;
Baugh, R. ;
McMullin, D. ;
Carter, T. .
SPACE SCIENCE REVIEWS, 2008, 136 (1-4) :67-115
[30]   FORMATION AND ERUPTION OF AN ACTIVE REGION SIGMOID. I. A STUDY BY NONLINEAR FORCE-FREE FIELD MODELING [J].
Jiang, Chaowei ;
Wu, S. T. ;
Feng, Xueshang ;
Hu, Qiang .
ASTROPHYSICAL JOURNAL, 2014, 780 (01)