Action of special linear groups to the tensor of indeterminates and classical invariants of binary forms

被引:0
作者
Miyazaki, Mitsuhiro [1 ]
机构
[1] Kyoto Univ, Dept Math, Fushimi Ku, 1 Fujinomori, Kyoto 6128522, Japan
关键词
Tensor; Special linear group; Classical invariants of binary forms; Sagbi basis;
D O I
10.1016/j.jalgebra.2016.11.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the ring of invariants under the action of SL(m, K) x SL(n, K) and SL(m, K) x SL(n, K) x SL(2, K) on the 3-dimensional tensor of indeterminates of form m x n x 2, where K is an infinite field. We show that if m = n >= 2, then the ring of SL(n, K) x SL(n, K)-invariants is generated by n+1 algebraically independent elements over K and the action of SL(2, K) on that ring is identical with the one defined in the classical invariant theory of binary forms. We also reveal the ring of SL(m, K) x SL(n, K)-invariants and SL(m, K) x SL(n, K) x SL(2, K)-invariants completely in the case where m not equal n. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:430 / 446
页数:17
相关论文
共 12 条
  • [1] [Anonymous], 1993, CAMBRIDGE STUDIES AD
  • [2] The invariants of the binary decimic
    Brouwer, Andries E.
    Popoviciu, Mihaela
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (08) : 837 - 843
  • [3] The invariants of the binary nonic
    Brouwer, Andries E.
    Popoviciu, Mihaela
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (06) : 709 - 720
  • [4] BRUNS W, 1988, LECT NOTES MATH, V1327, P1
  • [5] De Concini C., 1982, ASTERISQUE, V91
  • [6] MINIMUM NUMBER OF FUNDAMENTAL INVARIANTS FOR THE BINARY FORM OF DEGREE-7
    DIXMIER, J
    LAZARD, D
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1988, 6 (01) : 113 - 115
  • [7] Dolgachev I, 2003, LECT INVARIANT THEOR
  • [8] Hilbert D., 1993, Theory of algebraic invariants
  • [9] Mukai S., 2003, CAMBRIDGE STUD ADV M, P81
  • [10] ON GRADED RING OF INVARIANTS OF BINARY OCTAVICS
    SHIODA, T
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1967, 89 (04) : 1022 - &