Two-velocity hydrodynamics in fluid mechanics: Part I Well posedness for zero Mach number systems

被引:22
作者
Bresch, Didier [1 ]
Giovangigli, Vincent [2 ]
Zatorska, Ewelina [2 ,3 ,4 ]
机构
[1] Univ Savoie Mt Blanc, Lab Math, CNRS, UMR 5127, F-73376 Le Bourget Du Lac, France
[2] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[3] Polish Acad Sci, Inst Math, PL-00656 Warsaw, Poland
[4] Univ Warsaw, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2015年 / 104卷 / 04期
关键词
Zero Mach number; Augmented system; Navier-Stokes; Global weak solutions; Ghost effect; Mixture; Two-velocity hydrodynamics; EXISTENCE; MODEL; DENSITY; LIMIT;
D O I
10.1016/j.matpur.2015.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove global in time existence of weak solutions to zero Mach number systems arising in fluid mechanics with periodic boundary conditions. Relaxing a certain algebraic constraint between the viscosity and the conductivity introduced in [6] gives a more complete answer to an open question formulated in [23]. We introduce a new mathematical entropy which clearly shows existence of two-velocity hydrodynamics with a fixed mixture ratio. As an application of our result we first discuss a model of gaseous mixture extending the results of [10] to the global weak solutions framework. Second, we present the ghost effect system studied by C.D. Levermore, W. Sun and K. Trivisa [20] and discuss a contribution of the density-dependent heat-conductivity coefficient to the issue of existence of weak solutions. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:762 / 800
页数:39
相关论文
共 33 条
[1]   Low mach number limit of the full Navier-Stokes equations [J].
Alazard, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :1-73
[2]   Low Mach number flows and combustion [J].
Alazard, Thomas .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1186-1213
[3]  
[Anonymous], 1986, Ann Mat Pura Appl, DOI [DOI 10.1007/BF01762360, DOI 10.1007/BF01762360.MR916688]
[4]  
[Anonymous], 1984, APPL MATH SCI
[5]  
ANTONTSEV SN, 1990, STUD MATH APPL, V22
[6]   Effect of density dependent viscosities on multiphasic incompressible fluid models [J].
Bresch, Didier ;
Essoufi, El Haasan ;
Sy, Mamadou .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2007, 9 (03) :377-397
[7]   Two-velocity hydrodynamics in fluid mechanics: Part II Existence of global κ-entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities [J].
Bresch, Didier ;
Desjardins, Benoit ;
Zatorska, Ewelina .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04) :801-836
[8]   Global regularity for the initial value problem of a 2-D Kazhikhov-Smagulov type model [J].
Cai, Xiaoyun ;
Liao, Liangwen ;
Sun, Yongzhong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (15) :5975-5983
[9]   Incompressible Flows with Piecewise Constant Density [J].
Danchin, Raphael ;
Mucha, Piotr Boguslaw .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (03) :991-1023
[10]   ON THE WELL-POSEDNESS OF THE FULL LOW MACH NUMBER LIMIT SYSTEM IN GENERAL CRITICAL BESOV SPACES [J].
Danchin, Raphael ;
Liao, Xian .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (03)