Topological Quantum Matter

被引:6
作者
Duncan, F. [1 ]
Haldane, M. [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2018年 / 32卷 / 13期
关键词
MANY-FERMION SYSTEM; ANTIFERROMAGNETIC CHAIN; FIELD-THEORY; DIMENSIONS; MODEL; REALIZATION; SPIN-1; PHASE; STATE; WAVE;
D O I
10.1142/S0217979218300049
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. I will describe the history and background of three discoveries cited in this Nobel Prize: The "TKNN" topological formula for the integer quantum Hall effect found by David Thouless and collaborators, the Chern Insulator or quantum anomalous Hall effect, and its role in the later discovery of time-reversal-invariant topological insulators, and the unexpected topological spin-liquid state of the spin-1 quantum antiferromagnetic chain, which provided an initial example of topological quantum matter. I will summarize how these early beginnings have led to the exciting, and currently extremely active, field of "topological matter."
引用
收藏
页数:23
相关论文
共 38 条
[21]  
Kitaev A. Y., 2001, Physics Uspekhi, V44, P131, DOI [DOI 10.1070/1063-7869/44/10S/S29, 10.1070/1063-7869/44/10S/S29]
[22]  
LAUGHLIN RB, 1981, PHYS REV B, V23, P5632, DOI 10.1103/PhysRevB.23.5632
[23]   Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-Abelian fractional quantum Hall effect states [J].
Li, Hui ;
Haldane, F. D. M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (01)
[24]   CALCULATION OF CRITICAL EXPONENTS IN 2 DIMENSIONS FROM QUANTUM FIELD-THEORY IN ONE DIMENSION [J].
LUTHER, A ;
PESCHEL, I .
PHYSICAL REVIEW B, 1975, 12 (09) :3908-3917
[25]   AN EXACTLY SOLUBLE MODEL OF A MANY-FERMION SYSTEM [J].
LUTTINGER, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (09) :1154-&
[26]   EXACT SOLUTION OF A MANY-FERMION SYSTEM AND ITS ASSOCIATED BOSON FIELD [J].
MATTIS, DC ;
LIEB, EH .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (02) :304-&
[27]   Topological invariants of time-reversal-invariant band structures [J].
Moore, J. E. ;
Balents, L. .
PHYSICAL REVIEW B, 2007, 75 (12)
[28]   Topological field theory of time-reversal invariant insulators [J].
Qi, Xiao-Liang ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
PHYSICAL REVIEW B, 2008, 78 (19)
[29]   Topological phases and the quantum spin Hall effect in three dimensions [J].
Roy, Rahul .
PHYSICAL REVIEW B, 2009, 79 (19)
[30]   TOMONAGAS MODEL AND THRESHOLD SINGULARITY OF X-RAY SPECTRA OF METALS [J].
SCHOTTE, KD ;
SCHOTTE, U .
PHYSICAL REVIEW, 1969, 182 (02) :479-&