Superlattice multinanolayered thin films of SiO2/SiO2 + Ge for thermoelectric device applications

被引:10
作者
Budak, Satilmis [1 ]
Parker, Robert [2 ]
Smith, Cydale [3 ]
Muntele, Claudiu [4 ]
Heidary, Kaveh [1 ]
Johnson, Ralph B. [5 ]
Ila, Daryush [6 ]
机构
[1] Alabama A&M Univ, Dept Elect Engn & Comp Sci, Normal, AL 35762 USA
[2] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[3] Alabama A&M Univ, CIM, Normal, AL 35762 USA
[4] Cygnus Sci Serv, Huntsville, AL USA
[5] Alabama A&M Univ, Dept Phys, Normal, AL 35762 USA
[6] Fayetteville State Univ, Dept Chem & Phys, Fayetteville, NC USA
基金
美国国家科学基金会;
关键词
Ion bombardment; thermoelectric properties; transport properties; multinanolayers; figure of merit; THERMOELECTRIC PROPERTIES; EFFICIENCY; GROWTH; SIO2;
D O I
10.1177/1045389X13483022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermoelectric generators convert heat to electricity. Effective thermoelectric materials and devices have a low thermal conductivity and a high electrical conductivity. The performance of thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S-2 sigma T/K, where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature, and K is the thermal conductivity. We have prepared 100 alternating layers of SiO2/SiO2+ Ge superlattice thin films using ion beam-assisted deposition for the thermoelectric generator device application. The 5 MeV Si ion bombardments were performed using the Center for Irradiation Materials' Pelletron ion beam accelerator to form quantum dots and/or quantum clusters in the multinanolayer superlattice thin films to decrease the cross-plane thermal conductivity and increase the cross-plane Seebeck coefficient and cross-plane electrical conductivity. The thermoelectric and transport properties have been characterized for SiO2/SiO2+ Ge superlattice thin films.
引用
收藏
页码:1357 / 1364
页数:8
相关论文
共 36 条
  • [1] Aftergood Steven., 1989, Science and Global Security, V1, P93
  • [2] Effect of phonon confinement on the thermoelectric figure of merit of quantum wells
    Balandin, A
    Wang, KL
    [J]. JOURNAL OF APPLIED PHYSICS, 1998, 84 (11) : 6149 - 6153
  • [3] Thermoelectric properties of n-type Ca1-xBixMn1-ySiyO3-δ (x = y=0.00, 0.02, 0.03, 0.04, and 0.05) system
    Bhaskar, Ankam
    Liu, Chia-Jyi
    Yuan, J. J.
    Chang, Ching-Lin
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 552 : 236 - 239
  • [4] Thermal conductivity of symmetrically strained Si/Ge superlattices
    Borca-Tasciuc, T
    Liu, WL
    Liu, JL
    Zeng, TF
    Song, DW
    Moore, CD
    Chen, G
    Wang, KL
    Goorsky, MS
    Radetic, T
    Gronsky, R
    Koga, T
    Dresselhaus, MS
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (03) : 199 - 206
  • [5] Data reduction in 3ω method for thin-film thermal conductivity determination
    Borca-Tasciuc, T
    Kumar, AR
    Chen, G
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (04) : 2139 - 2147
  • [6] MeV Si ions bombardment effects on thermoelectric properties of sequentially deposited SiO2/AuxSiO2(1-x) nano-layers
    Budak, S.
    Muntele, C.
    Zheng, B.
    Ila, D.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 261 (1-2) : 1167 - 1170
  • [7] THERMAL-CONDUCTIVITY OF ALPHA-SIH THIN-FILMS
    CAHILL, DG
    KATIYAR, M
    ABELSON, JR
    [J]. PHYSICAL REVIEW B, 1994, 50 (09): : 6077 - 6081
  • [8] Raman and XRD studies of Ge nanocrystals in alumina films grown by RF-magnetron sputtering
    Caldelas, R.
    Rolo, A. G.
    Gomes, M. J. M.
    Alves, E.
    Ramos, A. R.
    Conde, O.
    Yerci, S.
    Turan, R.
    [J]. VACUUM, 2008, 82 (12) : 1466 - 1469
  • [9] Amorphization of Ge nanocrystals embedded in amorphous silica under ion irradiation
    Djurabekova, Flyura
    Backman, Marie
    Pakarinen, Olli H.
    Nordlund, Kai
    Araujo, Leandro L.
    Ridgway, Mark C.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2009, 267 (8-9) : 1235 - 1238
  • [10] Lead telluride as a thermoelectric material for thermoelectric power generation
    Dughaish, ZH
    [J]. PHYSICA B-CONDENSED MATTER, 2002, 322 (1-2) : 205 - 223