An evolutionary machine learning for multiple myeloma using Runge Kutta Optimizer from multi characteristic indexes

被引:15
作者
Ji, Yazhou [1 ]
Shi, Beibei [2 ]
Li, Yuanyuan [1 ]
机构
[1] Nanjing Med Univ, Dept Hematol, Affiliated Huaian 1 Peoples Hosp, Huaian, Peoples R China
[2] Jiangsu Univ, Affiliated Peoples Hosp, 8 Dianli Rd, Zhenjiang 212000, Jiangsu, Peoples R China
关键词
Multiple myeloma; Multi characteristic indexes; Runge Kutta Optimizer; Slime mould learning operator; Kernel extreme learning machine; Parameter optimization; Feature selection; OF-THE-ART; DIAGNOSIS; SURVIVAL;
D O I
10.1016/j.compbiomed.2022.106189
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning framework for MM diagnosis from multi characteristic indexes using slime mould Runge Kutta Optimizer (MSRUN) and kernel extreme learning machine, which is called as MSRUN-KELM. An efficient slime mould learning operator is introduced to the initial Runge Kutta Optimizer in MSRUN, ensuring that the trade-off between intensity and diversity is satisfied. The MSRUN was evaluated using IEEE CEC2014 benchmark functions, and the statistical results indicate a significant increase in the search performance of MSRUN. In MSRUN-KELM, kernel extreme machine learning is constructed on MM from multi-characteristic indexes with MSRUN, parameter optimization, and feature selection synchronized by MSRUN. The results of MSRUN-KELM on MM are accuracy of 93.88%, a Matthews correlation coefficient of 0.922677, and sensitivities of 93.41% and 93.19%. The suggested MSRUN-KELM may be utilized to analyze MM from multi-characteristic indexes well, and it can be treated as a potential tool for MM diagnosis.
引用
收藏
页数:13
相关论文
共 71 条
[1]  
Abraham RS, 2002, CLIN CHEM, V48, P655
[2]   RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method [J].
Ahmadianfar, Iman ;
Heidari, Ali Asghar ;
Gandomi, Amir H. ;
Chu, Xuefeng ;
Chen, Huiling .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 181
[3]   Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection [J].
Allegra, Alessandro ;
Tonacci, Alessandro ;
Sciaccotta, Raffaele ;
Genovese, Sara ;
Musolino, Caterina ;
Pioggia, Giovanni ;
Gangemi, Sebastiano .
CANCERS, 2022, 14 (03)
[4]  
[Anonymous], 2019, J CLIN ONCOL J AM SO
[5]   ELM and KELM based software defect prediction using feature selection techniques [J].
Arora, Ishani ;
Saha, Anju .
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2019, 40 (05) :1025-1045
[6]   Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome [J].
Avet-Loiseau, Herve ;
Attal, Michel ;
Moreau, Philippe ;
Charbonnel, Catherine ;
Garban, Frederic ;
Hulin, Cyrille ;
Leyvraz, Serge ;
Michallet, Mauricette ;
Yakoub-Agha, Ibrahim ;
Garderet, Laurent ;
Marit, Gerald ;
Michaux, Lucienne ;
Voillat, Laurent ;
Renaud, Marc ;
Grosbois, Bernard ;
Guillerm, Gaelle ;
Benboubker, Lotfi ;
Monconduit, Mathieu ;
Thieblemont, Catherine ;
Casassus, Philippe ;
Caillot, Denis ;
Stoppa, Anne-Marie ;
Sotto, Jean-Jacques ;
Wetterwald, Marc ;
Dumontet, Charles ;
Fuzibet, Jean-Gabriel ;
Azais, Isabelle ;
Dorvaux, Veronique ;
Zandecki, Marc ;
Bataille, Regis ;
Minvielle, Stephane ;
Harousseau, Jean-Luc ;
Facon, Thierry ;
Mathiot, Claire .
BLOOD, 2007, 109 (08) :3489-3495
[7]  
Balasubramanian Kishore, 2022, APPL SOFT COMPUT, DOI DOI 10.1016/J.ASOC.2022.109432
[8]  
Cengiz Enes, DUZCE UNIVERSITESI B, V9, P135
[9]   An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease [J].
Chen, Hui-Ling ;
Wang, Gang ;
Ma, Chao ;
Cai, Zhen-Nao ;
Liu, Wen-Bin ;
Wang, Su-Jing .
NEUROCOMPUTING, 2016, 184 :131-144
[10]  
Chen S, 2022, Clin Lab, V68