Projective synchronization of two coupled Lorenz chaotic systems in predefined time

被引:10
|
作者
Lin, Lixiong [1 ,2 ]
机构
[1] Jimei Univ, Sch Informat Engn, Fujian 361005, Peoples R China
[2] Jimei Univ, Sch Informat Engn, Yinjiang Campus,183 Yinjiang Rd, Xiamen, Fujian, Peoples R China
关键词
Predefined time stability; Projective synchronization; Lorenz chaotic systems; Lyapunov function; DELAY; STABILITY; TRACKING;
D O I
10.1007/s40435-021-00839-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the globally projective synchronization in predefined time for two coupled Lorenz chaotic systems. Firstly, a new globally predefined time stability theorem is proposed. Subsequently, the predefined time projective synchronization is achieved between two coupled Lorenz chaotic systems via active control Lyapunov function design. Different control methods are designed such that two coupled Lorenz chaotic systems can achieve predefined time projective synchronization. Numerical simulations are presented in order to show the reliability of the proposed methods.
引用
收藏
页码:879 / 889
页数:11
相关论文
共 50 条
  • [41] Single-channel predefined-time synchronisation of chaotic systems
    Jonathan Munoz-Vazquez, Aldo
    Diego Sanchez-Torres, Juan
    Alberto Anguiano-Gijon, Carlos
    ASIAN JOURNAL OF CONTROL, 2021, 23 (01) : 190 - 198
  • [42] FINITE-TIME SYNCHRONIZATION OF DYNAMICAL NETWORKS COUPLED WITH COMPLEX-VARIABLE CHAOTIC SYSTEMS
    Wu, Zhaoyan
    Ye, Qingling
    Liu, Danfeng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (09):
  • [43] Family of controllers for predefined-time synchronization of Lorenz-type systems and the Raspberry Pi-based implementation
    Martinez-Fuentes, Oscar
    Diaz-Munoz, Jonathan Daniel
    Munoz-Vazquez, Aldo Jonathan
    Tlelo-Cuautle, Esteban
    Fernandez-Anaya, Guillermo
    Cruz-Vega, Israel
    CHAOS SOLITONS & FRACTALS, 2024, 179
  • [44] Projective Synchronization of Piecewise Nonlinear Chaotic Maps
    S. Ahadpour
    A. Nemati
    F. Mirmasoudi
    N. Hematpour
    Theoretical and Mathematical Physics, 2018, 197 : 1856 - 1864
  • [45] A novel predefined-time projective synchronization strategy for multi-modal memristive neural networks
    Zhao, Hui
    Zhou, Lei
    Liu, Aidi
    Niu, Sijie
    Gao, Xizhan
    Zong, Xiju
    Li, Xin
    Li, Lixiang
    COGNITIVE NEURODYNAMICS, 2025, 19 (01)
  • [46] Function projective synchronization of different chaotic systems with uncertain parameters
    Du, Hongyue
    Zeng, Qingshuang
    Wang, Changhong
    PHYSICS LETTERS A, 2008, 372 (33) : 5402 - 5410
  • [47] Projective synchronization of unidentical chaotic systems based on stability criterion
    Yu, Hongjie
    Peng, Jianhua
    Liu, Yanzhu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (04): : 1049 - 1056
  • [48] Generalized projective synchronization of two coupled complex networks of different sizes
    Li Ke-Zan
    He En
    Zeng Zhao-Rong
    Tse, Chi K.
    CHINESE PHYSICS B, 2013, 22 (07)
  • [49] Projective Synchronization of Piecewise Nonlinear Chaotic Maps
    Ahadpour, S.
    Nemati, A.
    Mirmasoudi, F.
    Hematpour, N.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 197 (03) : 1856 - 1864
  • [50] Generalized projective synchronization between two different chaotic systems using active backstepping control
    Li, Guo Hui
    Zhou, Shi Ping
    Yang, Kui
    PHYSICS LETTERS A, 2006, 355 (4-5) : 326 - 330