Projective synchronization of two coupled Lorenz chaotic systems in predefined time

被引:10
作者
Lin, Lixiong [1 ,2 ]
机构
[1] Jimei Univ, Sch Informat Engn, Fujian 361005, Peoples R China
[2] Jimei Univ, Sch Informat Engn, Yinjiang Campus,183 Yinjiang Rd, Xiamen, Fujian, Peoples R China
关键词
Predefined time stability; Projective synchronization; Lorenz chaotic systems; Lyapunov function; DELAY; STABILITY; TRACKING;
D O I
10.1007/s40435-021-00839-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the globally projective synchronization in predefined time for two coupled Lorenz chaotic systems. Firstly, a new globally predefined time stability theorem is proposed. Subsequently, the predefined time projective synchronization is achieved between two coupled Lorenz chaotic systems via active control Lyapunov function design. Different control methods are designed such that two coupled Lorenz chaotic systems can achieve predefined time projective synchronization. Numerical simulations are presented in order to show the reliability of the proposed methods.
引用
收藏
页码:879 / 889
页数:11
相关论文
共 41 条
[1]   On predefined-time synchronisation of chaotic systems [J].
Alberto Anguiano-Gijon, Carlos ;
Jonathan Munoz-Vazquez, Aldo ;
Diego Sanchez-Torres, Juan ;
Romero-Galvan, Gerardo ;
Martinez-Reyes, Fernando .
CHAOS SOLITONS & FRACTALS, 2019, 122 :172-178
[2]   Enhancing the settling time estimation of a class of fixed-time stable systems [J].
Aldana-Lopez, Rodrigo ;
Gomez-Gutierrez, David ;
Jimenez-Rodriguez, Esteban ;
Diego Sanchez-Torres, Juan ;
Defoort, Michael .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (12) :4135-4148
[3]   Synchronization control of Hodgkin-Huxley neurons exposed to ELF electric field [J].
Che, Yan-Qiu ;
Wang, Jiang ;
Zhou, Si-Si ;
Deng, Bin .
CHAOS SOLITONS & FRACTALS, 2009, 40 (04) :1588-1598
[4]   Anti-Synchronization of a Class of Chaotic Systems with Application to Lorenz System: A Unified Analysis of the Integer Order and Fractional Order [J].
Chen, Liang ;
Huang, Chengdai ;
Liu, Haidong ;
Xia, Yonghui .
MATHEMATICS, 2019, 7 (06)
[5]   CHAOS CONTROL AND FUNCTION PROJECTIVE SYNCHRONIZATION OF FRACTIONAL-ORDER SYSTEMS THROUGH THE BACKSTEPPING METHOD [J].
Das, S. ;
Yadav, V. K. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 189 (01) :1430-1439
[6]  
Sánchez-Tones JD, 2015, P AMER CONTR CONF, P5842, DOI 10.1109/ACC.2015.7172255
[7]  
Sánchez-Torres JD, 2018, 2018 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE)
[8]   A class of predefined-time stable dynamical systems [J].
Diego Sanchez-Torres, Juan ;
Gomez-Gutierrez, David ;
Lopez, Esteban ;
Loukianov, Alexander G. .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 :1-29
[9]   Optimal Projective Synchronization of Non-identical Fractional-Order Chaotic Systems with Uncertainties and Disturbances Using Fractional Sliding Mode Control with GA and PSO Algorithms [J].
Djari, Abdelhamid .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (12) :10147-10161
[10]   Function projective synchronization of different chaotic systems with uncertain parameters [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
PHYSICS LETTERS A, 2008, 372 (33) :5402-5410