The blowup criterion of a smooth solution to the incompressible viscoelastic flow

被引:8
作者
Yuan, Baoquan [1 ]
Li, Rui [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Incompressible Oldroyd model; Blowup criteria; BMO space; GLOBAL EXISTENCE;
D O I
10.1016/j.jmaa.2013.04.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the blowup criterion of a smooth solution to the incompressible Oldroyd model. Assume (u(t, x), F(t, x)) is a smooth solution in [0, T). The solution (u(t, x), F(t, x)) does not develop singularity until t = T provided del F is an element of L-1 (0, T; BMO) in the case n = 2, and provided del u is an element of L-1(0, T; BMO), del F is an element of L-2(0, T; BMO) in the case n = 3. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:158 / 164
页数:7
相关论文
共 13 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]   The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions [J].
Chen, Yemin ;
Zhang, Ping .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (12) :1793-1810
[3]  
Coifman R., 1975, ASTERISQUE, V57
[4]  
Hu X. P., ARXIV11021113V1MATHA
[5]  
Kessenich P., PREPRINT
[6]   Bilinear estimates in BMO and the Navier-Stokes equations [J].
Kozono, H ;
Taniuchi, Y .
MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (01) :173-194
[7]  
Ladyzhenskaya O A., 1969, The Mathematical Theory of Viscous Incompressible Flow, V2nd ed.
[8]   Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit [J].
Lei, Z ;
Zhou, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (03) :797-814
[9]   Global solutions for incompressible viscoelastic fluids [J].
Lei, Zhen ;
Liu, Chun ;
Zhou, Yi .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 188 (03) :371-398
[10]   On hydrodynamics of viscoelastic fluids [J].
Lin, FH ;
Liu, C ;
Zhang, P .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (11) :1437-1471