The ARF Tumor Suppressor Can Promote the Progression of Some Tumors

被引:45
作者
Humbey, Olivier [1 ]
Pimkina, Julia [1 ]
Zilfou, Jack T. [3 ]
Jarnik, Michal [2 ]
Dominguez-Brauer, Carmen [4 ]
Burgess, Darren J. [5 ]
Eischen, Christine M. [6 ]
Murphy, Maureen E. [1 ]
机构
[1] Fox Chase Canc Ctr, Div Med Sci, Philadelphia, PA 19111 USA
[2] Fox Chase Canc Ctr, Div Basic Sci, Philadelphia, PA 19111 USA
[3] Zilfou Therapeut Inc, Allentown, PA USA
[4] Univ Illinois, Chicago, IL USA
[5] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[6] Vanderbilt Univ, Sch Med, Nashville, TN 37212 USA
关键词
D O I
10.1158/0008-5472.CAN-08-2263
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
p14/p19(ARF) (ARF) is a tumor suppressor gene that is frequently mutated in human cancer. ARF has multiple tumor suppressor functions, some of which are mediated by signaling to p53. Surprisingly, a significant fraction of human tumors retain persistently high levels of ARF, suggesting that ARF may possess a prosurvival function. We show that ARF protein is markedly up-regulated in cells exposed to nutrient starvation. Cells with silenced ARF show reduced autophagy and reduced viability when placed under conditions of starvation. We show for the first time that ARF silencing can limit the progression of some tumors, such as lymphoma, but not others, such as E1A/Ras-induced tumors. Specifically, myc-driven lymphomas with mutant p53 tend to overexpress ARF; we show that silencing ARF in these tumors greatly impedes their progression. These data are the first to show that ARF can act in a p53-independent manner to promote the progression of some tumors. [Cancer Res 2008;68(23):9608-13]
引用
收藏
页码:9608 / 9613
页数:6
相关论文
共 20 条
  • [1] p53-dependent and p53-independent activation of autophagy by ARF
    Abida, Wassirn M.
    Gu, Wei
    [J]. CANCER RESEARCH, 2008, 68 (02) : 352 - 357
  • [2] Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma
    Amaravadi, Ravi K.
    Yu, Duonan
    Lum, Julian J.
    Bui, Thi
    Christophorou, Maria A.
    Evan, Gerard I.
    Thomas-Tikhonenko, Andrei
    Thompson, Craig B.
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (02) : 326 - 336
  • [3] Reverse engineering of regulatory networks in human B cells
    Basso, K
    Margolin, AA
    Stolovitzky, G
    Klein, U
    Dalla-Favera, R
    Califano, A
    [J]. NATURE GENETICS, 2005, 37 (04) : 382 - 390
  • [4] Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance
    Carew, Jennifer S.
    Nawrocki, Steffan T.
    Kahue, Charissa N.
    Zhang, Hui
    Yang, Chunying
    Chung, Linda
    Houghton, Janet A.
    Huang, Peng
    Giles, Francis J.
    Cleveland, John L.
    [J]. BLOOD, 2007, 110 (01) : 313 - 322
  • [5] Probing tumor phenotypes using stable and regulated synthetic microRNA precursors
    Dickins, RA
    Hemann, MT
    Zilfou, JT
    Simpson, DR
    Ibarra, I
    Hannon, GJ
    Lowe, SW
    [J]. NATURE GENETICS, 2005, 37 (11) : 1289 - 1295
  • [6] Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis
    Eischen, CM
    Weber, JD
    Roussel, MF
    Sherr, CJ
    Cleveland, JL
    [J]. GENES & DEVELOPMENT, 1999, 13 (20) : 2658 - 2669
  • [7] Ras is involved in the negative control of autophagy through the class IPI3-kinase
    Furuta, S
    Hidaka, E
    Ogata, A
    Yokota, S
    Kamata, T
    [J]. ONCOGENE, 2004, 23 (22) : 3898 - 3904
  • [8] An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo
    Hemann, MT
    Fridman, JS
    Zilfou, JT
    Hernando, E
    Paddison, PJ
    Cordon-Cardo, C
    Hannon, GJ
    Lowe, SW
    [J]. NATURE GENETICS, 2003, 33 (03) : 396 - 400
  • [9] Inoue R, 1999, ANTICANCER RES, V19, P2939
  • [10] Role of autophagy in cancer - Management of metabolic stress
    Jin, Shengkan
    White, Eileen
    [J]. AUTOPHAGY, 2007, 3 (01) : 28 - 31