Ligand-Induced Dynamic Changes in Extended PDZ Domains from NHERF1

被引:24
|
作者
Bhattacharya, Shibani [1 ]
Ju, Jeong Ho [4 ]
Orlova, Natalia [4 ]
Khajeh, Jahan Ali [4 ]
Cowburn, David [2 ,3 ]
Bu, Zimei [4 ]
机构
[1] New York Struct Biol Ctr, New York, NY 10027 USA
[2] Yeshiva Univ Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA
[3] Yeshiva Univ Albert Einstein Coll Med, Dept Physiol & Biophys, Bronx, NY 10461 USA
[4] CUNY City Coll, Dept Chem, New York, NY 10031 USA
基金
美国国家卫生研究院;
关键词
scaffolding proteins; PDZ domain; NMR; ligand binding; protein structure; EXCHANGER REGULATORY FACTOR; TRANSMEMBRANE CONDUCTANCE REGULATOR; SCAFFOLDING PROTEIN EBP50; CARBOXYL-TERMINAL REGION; PEPTIDE RECOGNITION; BACKBONE DYNAMICS; STRUCTURAL BASIS; BINDING; NMR; EZRIN;
D O I
10.1016/j.jmb.2013.04.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The multi-domain scaffolding protein NHERF1 modulates the assembly and intracellular trafficking of various transmembrane receptors and ion-transport proteins. The two PDZ (postsynaptic density 95/disk large/zonula occluden 1) domains of NHERF1 possess very different ligand-binding capabilities: PDZ1 recognizes a variety of membrane proteins with high affinity, while PDZ2 only binds limited number of target proteins. Here using NMR, we have determined the structural and dynamic mechanisms that differentiate the binding affinities of the two PDZ domains, for the type 1 PDZ-binding motif (QDTRL) in the carboxyl terminus of cystic fibrosis transmembrane regulator. Similar to PDZ2, we have identified a helix-loop-helix subdomain coupled to the canonical PDZ1 domain. The extended PDZ1 domain is highly flexible with correlated backbone motions on fast and slow timescales, while the extended PDZ2 domain is relatively rigid. The malleability of the extended PDZ1 structure facilitates the transmission of conformational changes at the ligand-binding site to the remote helix-loop-helix extension. By contrast, ligand binding has only modest effects on the conformation and dynamics of the extended PDZ2 domain. The study shows that ligand-induced structural and dynamic changes coupled with sequence variation at the putative PDZ binding site dictate ligand selectivity and binding affinity of the two PDZ domains of NHERF1. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2509 / 2528
页数:20
相关论文
共 50 条
  • [31] Ligand-induced conformational changes in the β1-adrenergic receptor revealed by hydrogen-deuterium exchange mass spectrometry
    Toporowska, Joanna
    Kapoor, Parth
    Musgaard, Maria
    Gherbi, Karolina
    Sengmany, Kathy
    Qu, Feng
    Soave, Mark
    Yen, Hsin-Yung
    Hansen, Kjetil
    Jazayeri, Ali
    Hopper, Jonathan T. S.
    Politis, Argyris
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [32] Ligand-induced changes in dynamics in the RT loop of the C-terminal SH3 domain of Sem-5 indicate cooperative conformational coupling
    Ferreon, JC
    Hilser, VJ
    PROTEIN SCIENCE, 2003, 12 (05) : 982 - 996
  • [33] Ligand-induced changes in hepatitis C virus NS5B polymerase structure
    Rigat, Karen
    Wang, Yi
    Hudyma, Thomas W.
    Ding, Min
    Zheng, Xiaofan
    Gentles, Robert G.
    Beno, Brett R.
    Gao, Min
    Roberts, Susan B.
    ANTIVIRAL RESEARCH, 2010, 88 (02) : 197 - 206
  • [34] Detection of Ligand-induced Conformational Changes in the Activation Loop of Aurora-A Kinase by PELDOR Spectroscopy
    Burgess, Selena G.
    Concilio, Maria Grazia
    Bayliss, Richard
    Fielding, Alistair J.
    CHEMISTRYOPEN, 2016, 5 (06): : 531 - 534
  • [35] Crystallographic and CD probing of ligand-induced conformational changes in a plant PR-10 protein
    Sliwiak, Joanna
    Dolot, Rafal
    Michalska, Karolina
    Szpotkowski, Kamil
    Bujacz, Grzegorz
    Sikorski, Michal
    Jaskolski, Mariusz
    JOURNAL OF STRUCTURAL BIOLOGY, 2016, 193 (01) : 55 - 66
  • [36] Characterizing ligand-induced conformational changes in clinically relevant galectin-1 by HN/H2O (D2O) exchange
    Schedlbauer, Andreas
    Gilles, Ulrich
    Ludwig, Anna-Kristin
    Adler, Andreas
    Kaltner, Herbert
    Lindner, Ingo
    Mayo, Kevin H.
    Diercks, Tammo
    Reusch, Dietmar
    Gabius, Hans-Joachim
    BIOCHIMIE, 2021, 187 : 48 - 56
  • [37] SLOW LIGAND-INDUCED TRANSITIONS IN THE ALLOSTERIC PHOSPHOFRUCTOKINASE FROM ESCHERICHIA-COLI
    AUZAT, I
    GAWLITA, E
    GAREL, JR
    JOURNAL OF MOLECULAR BIOLOGY, 1995, 249 (02) : 478 - 492
  • [38] Ligand-induced expansion of the S1′ site in the anthrax toxin lethal factor
    Maize, Kimberly M.
    Kurbanov, Elbek K.
    Johnson, Rodney L.
    Amin, Elizabeth Ambrose
    Finzel, Barry C.
    FEBS LETTERS, 2015, 589 (24) : 3836 - 3841
  • [39] Sequential Cytoprotective Responses to Sigma1 Ligand-Induced Endoplasmic Reticulum Stresss
    Schrock, Joel M.
    Spino, Christina M.
    Longen, Charles G.
    Stabler, Stacy M.
    Marino, Jacqueline C.
    Pasternak, Gavril W.
    Kim, Felix J.
    MOLECULAR PHARMACOLOGY, 2013, 84 (05) : 751 - 762
  • [40] Ligand-induced conformational change of a protein reproduced by a linear combination of displacement vectors obtained from normal mode analysis
    Wako, Hiroshi
    Endo, Shigeru
    BIOPHYSICAL CHEMISTRY, 2011, 159 (2-3) : 257 - 266