The rate of convergence of Hurst index estimate for the stochastic differential equation

被引:19
作者
Kubilius, K. [1 ]
Mishura, Y. [2 ]
机构
[1] Vilniaus Univ, Inst Math & Informat, LT-08663 Vilnius, Lithuania
[2] Natl Taras Shevchenko Kyiv Univ, UA-01601 Kiev, Ukraine
关键词
Fractional Brownian motion; Stochastic differential equation; First- and second-order quadratic variations; Estimates of Hurst parameter; Rate of convergence; INEQUALITY; DRIVEN;
D O I
10.1016/j.spa.2012.06.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a stochastic differential equation involving a pathwise integral with respect to fractional Brownian motion. The estimates for the Hurst parameter are constructed according to first- and second-order quadratic variations of observed values of the solution. The rate of convergence of these estimates to the true value of a parameter is established when the diameter of interval partition tends to zero. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3718 / 3739
页数:22
相关论文
共 27 条
[1]  
[Anonymous], 2005, Electronic Journal of Probability
[2]   Identification of filtered white noises [J].
Benassi, A ;
Cohen, S ;
Istas, J ;
Jaffard, S .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 75 (01) :31-49
[4]   Estimation in models driven by fractional Brownian motion [J].
Berzin, Corinne ;
Leon, Jose R. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (02) :191-213
[5]  
Biagini F, 2008, PROBAB APPL SER, P1
[6]  
Breton J.-C., 2012, Stat Inference Stoch Pocess, V15, P1
[7]   Exact confidence intervals for the Hurst parameter of a fractional Brownian motion [J].
Breton, Jean-Christophe ;
Nourdin, Ivan ;
Peccati, Giovanni .
ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 :416-425
[8]  
Coeurjolly J.F., 2000, J STAT SOFTW, V50, P153
[9]  
Coeurjolly J-F., 2001, Stat. Inference for Stoch. Proc, V4, P199, DOI [DOI 10.1023/A:1017507306245, 10.1023/A:1017507306245]
[10]  
Dudley RM, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-6950-7