Experimental realization of non-Abelian non-adiabatic geometric gates

被引:311
作者
Abdumalikov, A. A., Jr. [1 ]
Fink, J. M. [1 ]
Juliusson, K. [1 ]
Pechal, M. [1 ]
Berger, S. [1 ]
Wallraff, A. [1 ]
Filipp, S. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
QUANTUM COMPUTATION; BERRYS PHASE;
D O I
10.1038/nature12010
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The geometric aspects of quantum mechanics are emphasized most prominently by the concept of geometric phases, which are acquired whenever a quantum system evolves along a path in Hilbert space, that is, the space of quantum states of the system. The geometric phase is determined only by the shape of this path(1-3) and is, in its simplest form, a real number. However, if the system has degenerate energy levels, then matrix-valued geometric state transformations, known as non-Abelian holonomies-the effect of which depends on the order of two consecutive paths-can be obtained(4). They are important, for example, for the creation of synthetic gauge fields in cold atomic gases(5) or the description of non-Abelian anyon statistics(6,7). Moreover, there are proposals(8,9) to exploit non-Abelian holonomic gates for the purposes of noise-resilient quantum computation. In contrast to Abelian geometric operations(10), non-Abelian ones have been observed only in nuclear quadrupole resonance experiments with a large number of spins, and without full characterization of the geometric process and its non-commutative nature(11,12). Here we realize non-Abelian non-adiabatic holonomic quantum operations(13,14) on a single, superconducting, artificial three-level atom(15) by applying a well-controlled, two-tone microwave drive. Using quantum process tomography, we determine fidelities of the resulting non-commuting gates that exceed 95 per cent. We show that two different quantum gates, originating from two distinct paths in Hilbert space, yield non-equivalent transformations when applied in different orders. This provides evidence for the non-Abelian character of the implemented holonomic quantum operations. In combination with a non-trivial two-quantum-bit gate, our method suggests a way to universal holonomic quantum computing.
引用
收藏
页码:482 / 485
页数:4
相关论文
共 31 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE [J].
ANANDAN, J .
PHYSICS LETTERS A, 1988, 133 (4-5) :171-175
[3]   Geometric phase memories [J].
Berry, Michael .
NATURE PHYSICS, 2010, 6 (03) :148-150
[5]   Control and Tomography of a Three Level Superconducting Artificial Atom [J].
Bianchetti, R. ;
Filipp, S. ;
Baur, M. ;
Fink, J. M. ;
Lang, C. ;
Steffen, L. ;
Boissonneault, M. ;
Blais, A. ;
Wallraff, A. .
PHYSICAL REVIEW LETTERS, 2010, 105 (22)
[6]   Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics [J].
Bianchetti, R. ;
Filipp, S. ;
Baur, M. ;
Fink, J. M. ;
Goeppl, M. ;
Leek, P. J. ;
Steffen, L. ;
Blais, A. ;
Wallraff, A. .
PHYSICAL REVIEW A, 2009, 80 (04)
[7]   Colloquium: Artificial gauge potentials for neutral atoms [J].
Dalibard, Jean ;
Gerbier, Fabrice ;
Juzeliunas, Gediminas ;
Oehberg, Patrik .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1523-1543
[8]   Geometric manipulation of trapped ions for quantum computation [J].
Duan, LM ;
Cirac, JI ;
Zoller, P .
SCIENCE, 2001, 292 (5522) :1695-1697
[9]   Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions [J].
Faoro, L ;
Siewert, J ;
Fazio, R .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4-028301
[10]   Experimental Demonstration of the Stability of Berry's Phase for a Spin-1/2 Particle [J].
Filipp, S. ;
Klepp, J. ;
Hasegawa, Y. ;
Plonka-Spehr, C. ;
Schmidt, U. ;
Geltenbort, P. ;
Rauch, H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (03)