Polynomial splines over locally refined box-partitions

被引:300
作者
Dokken, Tor [1 ]
Lyche, Tom [2 ]
Pettersen, Kjell Fredrik [1 ]
机构
[1] SINTEE, N-0314 Oslo, Norway
[2] Univ Oslo, CMA, N-0316 Oslo, Norway
关键词
Box-partition; LR-meshes; Dimension of spline spaces; Locally refined tensor product B-splines; Isogeometric analysis;
D O I
10.1016/j.cagd.2012.12.005
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We address progressive local refinement of splines defined on axes parallel box-partitions and corresponding box-meshes in any space dimension. The refinement is specified by a sequence of mesh-rectangles (axes parallel hyperrectangles) in the mesh defining the spline spaces. In the 2-variate case a mesh-rectangle is a knotline segment. When starting from a tensor-mesh this refinement process builds what we denote an LR-mesh, a special instance of a box-mesh. On the LR-mesh we obtain a collection of hierarchically scaled B-splines, denoted LR B-splines, that forms a nonnegative partition of unity and spans the complete piecewise polynomial space on the mesh when the mesh construction follows certain simple rules. The dimensionality of the spline space can be determined using some recent dimension formulas. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:331 / 356
页数:26
相关论文
共 19 条
[1]   Sharp asymptotics of the Lp approximation error for interpolation on block partitions [J].
Babenko, Yuliya ;
Leskevich, Tatyana ;
Mirebeau, Jean-Marie .
NUMERISCHE MATHEMATIK, 2011, 117 (03) :397-423
[2]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[3]   Linear independence of the T-spline blending functions associated with some particular T-meshes [J].
Buffa, A. ;
Cho, D. ;
Sangalli, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (23-24) :1437-1445
[4]  
Cottrell J.A., 2009, Isogeometric Analysis: Towards Unification of Computer Aided Design and Finite Element Analysis
[5]   Polynomial splines over hierarchical T-meshes [J].
Deng, Jiansong ;
Chen, Falai ;
Li, Xin ;
Hu, Changqi ;
Tong, Weihua ;
Yang, Zhouwang ;
Feng, Yuyu .
GRAPHICAL MODELS, 2008, 70 (76-86) :76-86
[6]  
Dokken T., 2009, 47 AIAA AER SCI M IN
[7]   Hierarchical B-spline refinement [J].
Forsey, David R. ;
Bartels, Richard H. .
Computer Graphics (ACM), 1988, 22 (04) :205-212
[8]   Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement [J].
Hughes, TJR ;
Cottrell, JA ;
Bazilevs, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (39-41) :4135-4195
[9]  
Kraft R, 1998, THESIS U STUTTGART
[10]   On the instability in the dimension of splines spaces over T-meshes [J].
Li, Xin ;
Chen, Falai .
COMPUTER AIDED GEOMETRIC DESIGN, 2011, 28 (07) :420-426