Quantum field theory over F1

被引:4
作者
Bejleri, Dori [1 ]
Marcolli, Matilde [1 ]
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Field with one element; Perturbative quantum field theory; Graph hypersurfaces and configuration spaces; Moduli spaces of curves; Torified-schemes; Grothendieck ring of varieties; CHERN CLASSES; FEYNMAN MOTIVES; VARIETIES; MANIFOLDS;
D O I
10.1016/j.geomphys.2013.03.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss some questions about geometry over the field with one element, motivated by the properties of algebraic varieties that arise in perturbative quantum field theory. We follow the approach to F-1-geometry based on torified-schemes. We first discuss some simple necessary conditions in terms of the Euler characteristic and classes in the Grothendieck ring, then we give a blowup formula for torified varieties and we show that the wonderful compactifications of the graph configuration spaces, that arise in the computation of Feynman integrals in position space, admit an F-1-structure. By a similar argument we show that the moduli spaces of curves M-0,M-n admit an F-1-structure, thus answering a question of Manin. We also discuss conditions on hyperplane arrangements, a possible notion of embedded F-1-structure and its relation to Chern classes, and questions on Chern classes of varieties with regular torifications. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:40 / 59
页数:20
相关论文
共 48 条
[1]  
Aluffi P, 2005, TRENDS MATH, P1, DOI 10.1007/3-7643-7342-3_1
[2]   Chern classes for singular varieties, revisited. [J].
Aluffi, P .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (06) :405-410
[3]  
Aluffi P., ARXIV 1207 6638
[4]  
Aluffi P., ARXIV 1103 2777
[5]  
Aluffi P., COMMUNICATION
[6]  
Aluffi P., ARXIV 1106 1447
[7]  
Aluffi P, 2011, CONTEMP MATH, V538, P21
[8]   ALGEBRO-GEOMETRIC FEYNMAN RULES [J].
Aluffi, Paolo ;
Marcolli, Matilde .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (01) :203-237
[9]  
Aluffi P, 2009, COMMUN NUMBER THEORY, V3, P1
[10]   CHERN CLASSES OF SCHUBERT CELLS AND VARIETIES [J].
Aluffi, Paolo ;
Mihalcea, Leonardo Constantin .
JOURNAL OF ALGEBRAIC GEOMETRY, 2009, 18 (01) :63-100