Can we bypass no-go theorem for Ricci-inverse gravity?

被引:23
作者
Das, Indranil [1 ]
Johnson, Joseph P. [2 ]
Shankaranarayanan, S. [2 ]
机构
[1] UM DAE Ctr Excellence Basic Sci, Mumbai 400098, Maharashtra, India
[2] Indian Inst Technol, Dept Phys, Mumbai 400076, Maharashtra, India
关键词
COSMOLOGICAL CONSTANT; UNIVERSE; LAMBDA;
D O I
10.1140/epjp/s13360-022-03472-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, Amendola et al. proposed a geometrical theory of gravity containing higher-order derivative terms (Amendola et al. in Phys Lett B 811:135923, 2020. https://doi.org/10.1016/j.physletb.2020.135923, arXiv:2006.04209). The authors introduced anticurvature scalar (A), which is the trace of the inverse of the Ricci tensor (A(mu nu) = R-mu nu(-1)).In this work, we consider two classes of Ricci-inverse-Class I and Class II-models. Class I models are of the formf (R, A) where f is a function of Ricci and anticurvature scalars. Class II models are of the form F(R, A(mu nu)A(mu nu)) where is a function of Ricci scalar and square of anticurvature tensor. For both these classes of models, we numerically solve the modified Friedmann equations in the redshift range 1500 < z < 0. We show that the late-time evolution of the Universe, i.e., evolution from matter-dominated epoch to accelerated expansion epoch, can not be explained by these two classes of models. Using the reduced action approach, we show that we can not bypass the no-go theorem for Ricci-inverse gravity models. Finally, we discuss the implications of our analysis for the early-Universe cosmology.
引用
收藏
页数:24
相关论文
共 29 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Ricci-inverse gravity: A novel alternative gravity, its flaws, and how to cure them [J].
Amendola, Luca ;
Giani, Leonardo ;
Laverda, Giorgio .
PHYSICS LETTERS B, 2020, 811
[3]   A note on second-order perturbations of non-canonical scalar fields [J].
Appignani, Corrado ;
Casadio, Roberto ;
Shankaranarayanan, S. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (03)
[4]   Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests [J].
Bamba, Kazuharu ;
Capozziello, Salvatore ;
Nojiri, Shin'ichi ;
Odintsov, Sergei D. .
ASTROPHYSICS AND SPACE SCIENCE, 2012, 342 (01) :155-228
[5]   Cosmology of generalized modified gravity models - art. no. 065313 [J].
Carroll, SM ;
De Felice, A ;
Duvvuri, V ;
Easson, DA ;
Trodden, M ;
Turner, MS .
PHYSICAL REVIEW D, 2005, 71 (06) :1-11
[6]   Dynamics of dark energy [J].
Copeland, Edmund J. ;
Sami, M. ;
Tsujikawa, Shinji .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (11) :1753-1935
[7]   f (R) Theories [J].
De Felice, Antonio ;
Tsujikawa, Shinji .
LIVING REVIEWS IN RELATIVITY, 2010, 13
[8]   Nonminimal dark sector physics and cosmological tensions [J].
Di Valentino, Eleonora ;
Melchiorri, Alessandro ;
Mena, Olga ;
Vagnozzi, Sunny .
PHYSICAL REVIEW D, 2020, 101 (06)
[9]   No-go theorem for inflation in an extended Ricci-inverse gravity model [J].
Do, Tuan Q. .
EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (01)
[10]   No-go theorem for inflation in Ricci-inverse gravity [J].
Do, Tuan Q. .
EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (05)