Methods for the Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation

被引:33
作者
Kadri, Tlili [2 ]
Khiari, Noomen [1 ]
Abidi, Faycal [3 ]
Omraw, Khaled [1 ]
机构
[1] Inst Super Sci Appl & Technol Sousse, Sousse Ibn Khaldoun 4003, Tunisia
[2] Fac Sci Tunis, Tunis 1060, Tunisia
[3] Ecole Polytech Tunis, La Marsa 2078, Tunisia
关键词
BBMB equation; weak formulation; existence; uniqueness; finite element method; semidiscrete schemes; fully discrete schemes; backward Euler; two-step backward method; error estimates;
D O I
10.1002/num.20330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
L-infinity-error estimates for finite element for Galerkin solutions for the Benjamin-Bona-Mahony-Burgers (BBMB) equation are considered. A priori bound and the semidiscrete Galerkin scheme are studied using appropriate projections. For fully discrete Galerkin schemes, we consider the backward Euler method and analyze the corresponding error estimates. For a second order accuracy in time, we propose a three-level backward method. (C) 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 24: 1501-1516, 2008
引用
收藏
页码:1501 / 1516
页数:16
相关论文
共 30 条
[1]   On the convergence of difference schemes for the Benjamin-Bona-Mahony (BBM) equation [J].
Achouri, T. ;
Khiari, N. ;
Omrani, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) :999-1005
[2]   Approximate wave solutions for generalized Benjamin-Bona-Mahony-Burgers equations [J].
Al-Khaled, K ;
Momani, S ;
Alawneh, A .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (01) :281-292
[3]  
ARNOLD DN, 1981, MATH COMPUT, V27, P737
[4]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[5]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[6]  
CHANG SK, 1994, APPL ANAL, V54, P39
[7]  
Chen Y., 2005, COMMUN NONLINEAR SCI, V10, P133, DOI DOI 10.1016/S1007-5704(03)00121-7
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]   Numerical behaviour of stable and unstable solitary waves [J].
Durán, A ;
López-Marcos, MA .
APPLIED NUMERICAL MATHEMATICS, 2002, 42 (1-3) :95-116