Free entropy dimension in amalgamated free products

被引:35
作者
Brown, Nathanial P. [1 ]
Dykema, Kenneth J. [2 ]
Jung, Kenley [3 ]
机构
[1] Penn State Univ, Dept Math, State Coll, PA 16802 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1112/plms/pdm054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the microstates free entropy dimension of natural generators in an amalgamated free product of certain von Neumann algebras, with amalgamation over a hyperfinite subalgebra. In particular, some 'exotic' Popa algebra generators of free group factors are shown to have the expected free entropy dimension. We also show that microstates and non-microstates free entropy dimension agree for generating sets of many groups. In the appendix, the first L-2-Betti number for certain amalgamated free products of groups is calculated.
引用
收藏
页码:339 / 367
页数:29
相关论文
共 32 条
[1]   Group cohomology, harmonic functions and the first L-2-Betti number [J].
Bekka, MEB ;
Valette, A .
POTENTIAL ANALYSIS, 1997, 6 (04) :313-326
[2]   Large deviation bounds for matrix Brownian motion [J].
Biane, P ;
Capitaine, M ;
Guionnet, A .
INVENTIONES MATHEMATICAE, 2003, 152 (02) :433-459
[3]  
Brown NP, 2004, J REINE ANGEW MATH, V573, P157
[4]  
BROWN NP, 2006, MEM AM MATH SOC, V184
[5]   L2-COHOMOLOGY AND GROUP COHOMOLOGY [J].
CHEEGER, J ;
GROMOV, M .
TOPOLOGY, 1986, 25 (02) :189-215
[6]  
Connes A, 2005, J REINE ANGEW MATH, V586, P125
[7]  
DICKS W, 2005, ARXIVMATH0508370
[8]   INTERPOLATED FREE GROUP FACTORS [J].
DYKEMA, K .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 163 (01) :123-135
[9]  
Dykema K, 2005, DOC MATH, V10, P247
[10]   FREE-PRODUCTS OF HYPERFINITE VON NEUMANN ALGEBRAS AND FREE DIMENSION [J].
DYKEMA, K .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (01) :97-119