We present an algorithm for generating a twice-differentiable curve on the rotation group SO(3) that interpolates a given ordered set of rotation matrices at their specified knot times. In our approach we regard SO(3) as a Lie group with a bi-invariant Riemannian metric, and apply the coordinate-invariant methods of Riemannian geometry. The resulting rotation curve is easy to compute, invariant with respect to fixed and moving reference frames, and also approximately minimizes angular acceleration.
机构:
Univ Paris Saclay, Ctr Giovanni Alfonso Borelli, CNRS, F-91190 Gif Sur Yvette, FranceUniv Paris Saclay, Ctr Giovanni Alfonso Borelli, CNRS, F-91190 Gif Sur Yvette, France
Mazarguil, Antoine
Oudre, Laurent
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Ctr Giovanni Alfonso Borelli, CNRS, F-91190 Gif Sur Yvette, FranceUniv Paris Saclay, Ctr Giovanni Alfonso Borelli, CNRS, F-91190 Gif Sur Yvette, France
机构:
Univ Western Australia, Sch Comp Sci & Software Engn, 35 Stirling Highway, Perth, WA 6009, AustraliaUniv Western Australia, Sch Comp Sci & Software Engn, 35 Stirling Highway, Perth, WA 6009, Australia
Kozera, Ryszard
Noakes, Lyle
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Sch Math & Stat, Perth, WA 6009, AustraliaUniv Western Australia, Sch Comp Sci & Software Engn, 35 Stirling Highway, Perth, WA 6009, Australia
机构:
Univ Prince Edward Isl, Dept Math & Stat, Charlottetown, PE C1A 4P3, CanadaUniv Prince Edward Isl, Dept Math & Stat, Charlottetown, PE C1A 4P3, Canada
Islam, Md Shafiqul
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS,
2013,
23
(02):