Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number

被引:122
|
作者
Turkel, Eli [2 ]
Gordon, Dan [1 ]
Gordon, Rachel [3 ]
Tsynkov, Semyon [4 ]
机构
[1] Univ Haifa, Dept Comp Sci, IL-31905 Haifa, Israel
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Technion Israel Inst Technol, Dept Aerosp Engn, IL-32000 Haifa, Israel
[4] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
Helmholtz equation; Compact high order schemes; Variable wave number; High frequency; Large wave number; Parallel computing; CARP-CG; FINITE-DIFFERENCE SCHEMES; LINEAR-SYSTEMS; 6TH-ORDER;
D O I
10.1016/j.jcp.2012.08.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Several studies have presented compact fourth order accurate finite difference approximation for the Helmholtz equation in two or three dimensions. Several of these formulae allow for the wave number k to be variable. Other papers have extended this further to include variable coefficients within the Laplacian which models non-homogeneous materials in electromagnetism. Later papers considered more accurate compact sixth order methods but these were restricted to constant k. In this paper we extend these compact sixth order schemes to variable k in both two and three dimensions. Results on 2D and 3D problems with known analytic solutions verify the sixth order accuracy. We demonstrate that for large wave numbers, the second order scheme cannot produce comparable results with reasonable grid sizes. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:272 / 287
页数:16
相关论文
共 50 条