Importance of structural deformation features in the prediction of hybrid perovskite bandgaps

被引:26
|
作者
Park, Heesoo [1 ]
Mall, Raghvendra [2 ]
Ali, Adnan [1 ]
Sanvito, Stefano [3 ]
Bensmail, Halima [2 ]
El-Mellouhi, Fedwa [1 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Environm & Energy Res Inst, POB 34110, Doha, Qatar
[2] Hamad Bin Khalifa Univ, Qatar Comp Res Inst, Doha, Qatar
[3] Trinity Coll Dublin, AMBER & CRANN Inst, Sch Phys, Dublin 2, Ireland
关键词
Machine Learning; Hybrid Perovskite; Octahedral deformation; Mixed-Cation; Bandgap; GENERALIZED GRADIENT APPROXIMATION; ORGANIC-INORGANIC PEROVSKITES; TOTAL-ENERGY CALCULATIONS; EFFICIENT; SEMICONDUCTORS;
D O I
10.1016/j.commatsci.2020.109858
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Given the surging growth of artificial-intelligence-inspired computational methods in materials science, experimental laboratories around the globe have become open to adopting data-driven approaches for materials discovery. The field witnesses emerging machine-learning models trained over databases, of which data are collected from high-throughput experimentation or first-principles calculation. Here, we address the impediment of constructing a highly accurate predictor for perovskite bandgap when the inorganic network undergoes the deformation. The predictor is trained on a dataset of first-principles calculations of pure and mixed-cation hybrid perovskites. We investigate the impact of the inclusion/exclusion of structural deformation features by training the model carefully. A high level of accuracy could be achieved with a scrupulous investigation of the input features. Our analysis emphasizes how important the feature selection is for the construction of the predictive model as we challenge the robustness of our machine learning predictor in a lab validation setup.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Chemical and Structural Diversity of Hybrid Layered Double Perovskite Halides
    Mao, Lingling
    Teicher, Samuel M. L.
    Stoumpos, Constantinos C.
    Kennard, Rhys M.
    DeCrescent, Ryan A.
    Wu, Guang
    Schuller, Jon A.
    Chabinyc, Michael L.
    Cheetham, Anthony K.
    Seshadri, Ram
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (48) : 19099 - 19109
  • [2] Structural and electronic features of small hybrid organic-inorganic halide perovskite clusters: a theoretical analysis
    Giorgi, Giacomo
    Yoshihara, Tomohiro
    Yamashita, Koichi
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (39) : 27124 - 27132
  • [3] A structural characterization of shortcut features for prediction
    Bellamy, David
    Hernan, Miguel A.
    Beam, Andrew
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2022, 37 (06) : 563 - 568
  • [4] A structural characterization of shortcut features for prediction
    David Bellamy
    Miguel A. Hernán
    Andrew Beam
    European Journal of Epidemiology, 2022, 37 : 563 - 568
  • [5] Prediction of perovskite structures and thermodynamic stabilities from structural factors
    Wang, Menghui
    Hu, Huashuai
    Lin, Shijian
    Yang, Pan
    Yang, Dongyan
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (24): : 3146 - 3154
  • [6] Hydrogen Bonding Controls the Structural Evolution in Perovskite-Related Hybrid Platinum(IV) Iodides
    Evans, Hayden A.
    Fabini, Douglas H.
    Andrews, Jessica L.
    Koerner, Mitchell
    Preefer, Molleigh B.
    Wu, Guang
    Wudl, Fred
    Cheetham, Anthony K.
    Seshadri, Ram
    INORGANIC CHEMISTRY, 2018, 57 (16) : 10375 - 10382
  • [7] A machine learning model for parameter correlation analysis and structural deformation prediction
    Chen, Cheng
    Wang, Zhansheng
    Shi, Peixin
    Jia, Pengjiao
    2022 INTERNATIONAL CONFERENCE ON MECHANICAL, AUTOMATION AND ELECTRICAL ENGINEERING, CMAEE, 2022, : 13 - 19
  • [8] Crystal structural prediction of perovskite materials using machine learning: A comparative study
    Priyadarshini, Rojalina
    Joardar, Hillol
    Bisoy, Sukant Kishoro
    Badapanda, Tanmaya
    SOLID STATE COMMUNICATIONS, 2023, 361
  • [9] Structural, optoelectronic, thermal and transport properties of hybrid perovskite (EAGeCl 3 ) material
    Dubey, A.
    Mishra, K.
    Srivastava, R.
    Kumari, A.
    Jangra, P. K.
    Joshi, T. K.
    Choudhary, B. L.
    Verma, A. S.
    JOURNAL OF OVONIC RESEARCH, 2024, 20 (03): : 381 - 394
  • [10] Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases
    Munir, Rahim
    Sheikh, Arif D.
    Abdelsamie, Maged
    Hu, Hanlin
    Yu, Liyang
    Zhao, Kui
    Kim, Taesoo
    El Tall, Omar
    Li, Ruipeng
    Smilgies, Detlef-M.
    Amassian, Aram
    ADVANCED MATERIALS, 2017, 29 (02)