Matrix-valued Boltzmann equation for the Hubbard chain

被引:25
作者
Fuerst, Martin L. R. [1 ,2 ]
Mendl, Christian B. [1 ]
Spohn, Herbert [1 ,3 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85748 Garching, Germany
[2] Excellence Cluster Univ, D-85748 Garching, Germany
[3] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 03期
关键词
TRANSPORT;
D O I
10.1103/PhysRevE.86.031122
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study, both analytically and numerically, the Boltzmann transport equation for the Hubbard chain with nearest-neighbor hopping and spatially homogeneous initial condition. The time-dependent Wigner function is matrix-valued because of spin. The H theorem holds. The nearest-neighbor chain is integrable, which, on the kinetic level, is reflected by infinitely many additional conservation laws and linked to the fact that there are also nonthermal stationary states. We characterize all stationary solutions. Numerically, we observe an exponentially fast convergence to stationarity and investigate the convergence rate in dependence on the initial conditions.
引用
收藏
页数:13
相关论文
共 11 条
[1]   On the quantum Boltzmann equation [J].
Erdös, L ;
Salmhofer, M ;
Yau, HT .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :367-380
[2]  
Essler F. H. L., 2005, The One-Dimensional Hubbard Model
[3]  
Fehske H., 2008, Computational Many-Particle Physics
[4]   Not to Normal Order-Notes on the Kinetic Limit for Weakly Interacting Quantum Fluids [J].
Lukkarinen, Jani ;
Spohn, Herbert .
JOURNAL OF STATISTICAL PHYSICS, 2009, 134 (5-6) :1133-1172
[5]  
Mei P., UNPUB
[7]  
Peierls R, 1929, ANN PHYS-BERLIN, V3, P1055
[8]  
Rasetti M., 1991, The Hubbard Model
[9]  
Schneider U, 2012, NAT PHYS, V8, P213, DOI [10.1038/NPHYS2205, 10.1038/nphys2205]
[10]   Collisional invariants for the phonon Boltzmann equation [J].
Spohn, Herbert .
JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (05) :1131-1135