A pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data

被引:86
|
作者
Parker, G. D. [1 ,2 ,4 ]
Marshall, D. [4 ]
Rosin, P. L. [4 ]
Drage, N. [2 ]
Richmond, S. [2 ]
Jones, D. K. [1 ,3 ]
机构
[1] Cardiff Univ, Sch Psychol, CUBRIC, Cardiff CF24 3AA, S Glam, Wales
[2] Cardiff Univ, Sch Dent, Cardiff CF24 3AA, S Glam, Wales
[3] Cardiff Univ, Neurosci & Mental Hlth Res Inst, Cardiff CF24 3AA, S Glam, Wales
[4] Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF24 3AA, S Glam, Wales
基金
英国惠康基金;
关键词
Spherical harmonic deconvolution; Richardson-Lucy; MRI; Calibration; Tractography; Diffusion tensor imaging; AXON DIAMETER; TENSOR; TRACTOGRAPHY; DENSITY;
D O I
10.1016/j.neuroimage.2012.10.022
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion weighted (DW) MRI facilitates non-invasive quantification of tissue microstructure and, in combination with appropriate signal processing, three-dimensional estimates of fibrous orientation. In recent years, attention has shifted from the diffusion tensor model, which assumes a unimodal Gaussian diffusion displacement profile to recover fibre orientation (with various well-documented limitations), towards more complex high angular resolution diffusion imaging (HARDI) analysis techniques. Spherical deconvolution (SD) approaches assume that the fibre orientation density function (fODF) within a voxel can be obtained by deconvolving a 'common' single fibre response function from the observed set of DW signals. In practice, this common response function is not known a priori and thus an estimated fibre response must be used. Here the establishment of this single-fibre response function is referred to as 'calibration'. This work examines the vulnerability of two different SD approaches to inappropriate response function calibration: (1) constrained spherical harmonic deconvolution (CSHD) a technique that exploits spherical harmonic basis sets and (2) damped Richardson-Lucy (dRL) deconvolution a technique based on the standard Richardson-Lucy deconvolution. Through simulations, the impact of a discrepancy between the calibrated diffusion profiles and the observed ('Target') OW-signals in both single and crossing-fibre configurations was investigated. The results show that CSHD produces spurious fODF peaks (consistent with well known ringing artefacts) as the discrepancy between calibration and target response increases, while dRL demonstrates a lower over-all sensitivity to miscalibration (with a calibration response function for a highly anisotropic fibre being optimal). However, dRL demonstrates a reduced ability to resolve low anisotropy crossing-fibres compared to CSHD. It is concluded that the range and spatial-distribution of expected single-fibre anisotropies within an image must be carefully considered to ensure selection of the appropriate algorithm, parameters and calibration. Failure to choose the calibration response function carefully may severely impact the quality of any resultant tractography. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:433 / 448
页数:16
相关论文
共 50 条
  • [1] Constrained spherical deconvolution of nonspherically sampled diffusion MRI data
    Morez, Jan
    Sijbers, Jan
    Vanhevel, Floris
    Jeurissen, Ben
    HUMAN BRAIN MAPPING, 2021, 42 (02) : 521 - 538
  • [2] Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data
    Tax, Chantal M. W.
    Jeurissen, Ben
    Vos, Sjoerd B.
    Viergever, Max A.
    Leemans, Alexander
    NEUROIMAGE, 2014, 86 : 67 - 80
  • [3] Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution
    Tournier, JD
    Calamante, F
    Gadian, DG
    Connelly, A
    NEUROIMAGE, 2004, 23 (03) : 1176 - 1185
  • [4] Feasibility study to unveil the potential: considerations of constrained spherical deconvolution tractography with unsedated neonatal diffusion brain MRI data
    Verschuur, Anouk S.
    Tax, Chantal M. W.
    Boomsma, Martijn F.
    Carlson, Helen L.
    van Wezel-Meijler, Gerda
    King, Regan
    Leemans, Alexander
    Leijser, Lara M.
    FRONTIERS IN RADIOLOGY, 2024, 4
  • [5] Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization
    Canales-Rodriguez, Erick J.
    Daducci, Alessandro
    Sotiropoulos, Stamatios N.
    Caruyer, Emmanuel
    Aja-Fernandez, Santiago
    Radua, Joaquim
    Yurramendi Mendizabal, Jesus M.
    Iturria-Medina, Yasser
    Melie-Garcia, Lester
    Aleman-Gomez, Yasser
    Thiran, Jean-Philippe
    Sarro, Salvador
    Pomarol-Clotet, Edith
    Salvador, Raymond
    PLOS ONE, 2015, 10 (10):
  • [6] Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
    Jeurissen, Ben
    Tournier, Jacques-Donald
    Dhollander, Thijs
    Connelly, Alan
    Sijbers, Jan
    NEUROIMAGE, 2014, 103 : 411 - 426
  • [7] Sparse Blind Spherical Deconvolution of diffusion weighted MRI
    Fuchs, Clement
    Dessain, Quentin
    Delinte, Nicolas
    Dausort, Manon
    Macq, Benoit
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [8] Diffusion MRI GAN synthesizing fibre orientation distribution data using generative adversarial networks
    Vellmer, Sebastian
    Aydogan, Dogu Baran
    Roine, Timo
    Cacciola, Alberto
    Picht, Thomas
    Fekonja, Lucius S.
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [9] Sparse wars: A survey and comparative study of spherical deconvolution algorithms for diffusion MRI
    Jorge Canales-Rodriguez, Erick
    Haitz Legarreta, Jon
    Pizzolato, Marco
    Rensonnet, Gaetan
    Girard, Gabriel
    Rafael-Patino, Jonathan
    Barakovic, Muhamed
    Romascano, David
    Aleman-Gomez, Yasser
    Radua, Joaquim
    Pomarol-Clotet, Edith
    Salvador, Raymond
    Thiran, Jean-Philippe
    Daducci, Alessandro
    NEUROIMAGE, 2019, 184 : 140 - 160
  • [10] Connectome analysis with diffusion MRI in idiopathic Parkinson's disease: Evaluation using multi-shell, multi-tissue, constrained spherical deconvolution
    Kamagata, Koji
    Zalesky, Andrew
    Hatano, Taku
    Di Biase, Maria Angelique
    El Samad, Omar
    Saiki, Shinji
    Shimoji, Keigo
    Kumamaru, Kanako K.
    Kamiya, Kouhei
    Hori, Masaaki
    Hattori, Nobutaka
    Aoki, Shigeki
    Pantelis, Christos
    NEUROIMAGE-CLINICAL, 2018, 17 : 518 - 529