Q 1-degrees of c.e. sets

被引:13
作者
Omanadze, R. Sh. [1 ]
Chitaia, I. O. [1 ]
机构
[1] Iv Javakhishvili Tbilisi State Univ, GE-0186 Tbilisi, Georgia
基金
美国国家科学基金会;
关键词
Q(1)-reducibility; s-reducibility; Hyperhypersimple set; Hemimaximal set; LATTICE;
D O I
10.1007/s00153-012-0278-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Q-degree of a hyperhypersimple set includes an infinite collection of Q (1)-degrees linearly ordered under with order type of the integers and consisting entirely of hyperhypersimple sets. Also, we prove that the c.e. Q (1)-degrees are not an upper semilattice. The main result of this paper is that the Q (1)-degree of a hemimaximal set contains only one c.e. 1-degree. Analogous results are valid for s (1)-degrees.
引用
收藏
页码:503 / 515
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 1987, THEORY RECURSIVE FUN
[2]  
[Anonymous], 1987, PERSPECTIVES MATH LO
[3]   AUTOMORPHISMS OF THE LATTICE OF RECURSIVELY-ENUMERABLE SETS - ORBITS [J].
DOWNEY, RG ;
STOB, M .
ADVANCES IN MATHEMATICS, 1992, 92 (02) :237-265
[4]   SUBCREATIVE SETS AND S-REDUCIBILITY [J].
GILL, JT ;
MORRIS, PH .
JOURNAL OF SYMBOLIC LOGIC, 1974, 39 (04) :669-677
[5]  
Kobzev G.N., 1975, THESIS NOVOSIBIRSK
[6]   ONE CLASS OF PARTIAL SETS [J].
MARCHENKOV, SS .
MATHEMATICAL NOTES, 1976, 20 (3-4) :823-825
[7]  
MILLER D, 1984, J SYMBOLIC LOGIC, V49, P129, DOI 10.2307/2274096
[8]  
Morozov AS., 1987, SIB MAT ZH, V28, P124
[9]  
Omanadze R., 1991, ALGEBR LOG+, V30, P265
[10]  
Omanadze R., 1984, ALGEBR LOG+, V23, P124