Differential and Twistor Geometry of the Quantum Hopf Fibration

被引:4
作者
Brain, Simon [1 ]
Landi, Giovanni [2 ,3 ]
机构
[1] Univ Luxembourg, Unite Rech Math, L-1359 Luxembourg, Luxembourg
[2] Univ Trieste, Dipartimento Matemat, I-34127 Trieste, Italy
[3] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy
关键词
SPIN GEOMETRY; INSTANTONS; CALCULUS; 4-SPHERE;
D O I
10.1007/s00220-012-1565-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a quantum version of the SU(2) Hopf fibration and its associated twistor geometry. Our quantum sphere arises as the unit sphere inside a q-deformed quaternion space . The resulting four-sphere is a quantum analogue of the quaternionic projective space . The quantum fibration is endowed with compatible non-universal differential calculi. By investigating the quantum symmetries of the fibration, we obtain the geometry of the corresponding twistor space and use it to study a system of anti-self-duality equations on , for which we find an 'instanton' solution coming from the natural projection defining the tautological bundle over .
引用
收藏
页码:489 / 530
页数:42
相关论文
共 26 条
[1]  
[Anonymous], 1979, Fermi Lectures
[2]   PSEUDOPARTICLE SOLUTIONS OF YANG-MILLS EQUATIONS [J].
BELAVIN, AA ;
POLYAKOV, AM ;
SCHWARTZ, AS ;
TYUPKIN, YS .
PHYSICS LETTERS B, 1975, 59 (01) :85-87
[3]   Noncommutative instantons on the 4-sphere from quantum groups [J].
Bonechi, F ;
Ciccoli, N ;
Tarlini, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 226 (02) :419-432
[4]   Quantisation of Twistor Theory by Cocycle Twist [J].
Brain, S. J. ;
Majid, S. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (03) :713-774
[5]   THE 3D SPIN GEOMETRY OF THE QUANTUM TWO-SPHERE [J].
Brain, Simon ;
Landi, Giovanni .
REVIEWS IN MATHEMATICAL PHYSICS, 2010, 22 (08) :963-993
[6]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[7]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[8]   Noncommutative manifolds, the instanton algebra and isospectral deformations [J].
Connes, A ;
Landi, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (01) :141-159
[9]   Anti-Selfdual Connections on the Quantum Projective Plane: Monopoles [J].
D'Andrea, Francesco ;
Landi, Giovanni .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (03) :841-893
[10]   Instantons on the quantum 4-spheres S4q [J].
Dabrowski, L ;
Landi, G ;
Masuda, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (01) :161-168