Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems

被引:225
|
作者
O'Connell, Mitchell R. [1 ,2 ]
机构
[1] Univ Rochester, Sch Med & Dent, Dept Biochem & Biophys, Rochester, NY 14642 USA
[2] Univ Rochester, Ctr RNA Biol, Rochester, NY 14642 USA
关键词
CRISPR-Cas immunity; Type VI CRISPR-Cas systems; Cas13; C2c2; NUCLEIC-ACID DETECTION; CRYSTAL-STRUCTURE; ADAPTIVE IMMUNITY; CLEAVAGE; BINDING; DNA; PROTEIN; EVOLUTION; REVEALS; DEFENSE;
D O I
10.1016/j.jmb.2018.06.029
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prokaryotic adaptive immune systems use Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins for RNA-guided cleavage of foreign genetic elements. The focus of this review, Type VI CRISPR-Cas systems, contain a single protein, Cas13 (formerly C2c2) that when assembled with a CRISPR-RNA (crRNA) forms a crRNA-guided RNA-targeting effector complex. Type VI CRISPR-Cas systems can be divided into four subtypes (A-D) based on Cas13 phylogeny. All Cas13 proteins studied to date possess two enzymatically distinct ribonuclease activities that are required for optimal interference. One RNase is responsible for pre-crRNA processing to form mature Type VI interference complexes, while the other RNase activity provided by the two Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, is required for degradation of target-RNA during viral interference. In this review, I will compare and contrast what is known about the molecular architecture and behavior of Type VI (A-D) CRISPR Cas13 interference complexes, how this allows them to carry out their RNA-targeting function, how Type VI accessory proteins are able to modulate Cas13 activity, and how together all of these features have led to the rapid development of a range of RNA-targeting applications. Throughout I will also discuss some of the outstanding questions regarding Cas13's molecular behavior, and its role in bacterial adaptive immunity and RNA-targeting applications. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:66 / 87
页数:22
相关论文
共 50 条
  • [31] Enhanced RNA-targeting CRISPR-Cas technology in zebrafish
    Moreno-Sanchez, Ismael
    Hernandez-Huertas, Luis
    Nahon-Cano, Daniel
    Martinez-Garcia, Pedro Manuel
    Treichel, Anthony J.
    Gomez-Marin, Carlos
    Tomas-Gallardo, Laura
    da Silva Pescador, Gabriel
    Kushawah, Gopal
    Egidy, Rhonda
    Perera, Anoja
    Diaz-Moscoso, Alejandro
    Cano-Ruiz, Alejandra
    Walker II, John A.
    Munoz, Manuel J.
    Holden, Kevin
    Galceran, Joan
    Nieto, M. angela
    Bazzini, Ariel A.
    Moreno-Mateos, Miguel A.
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [32] Evolution and classification of the CRISPR-Cas systems
    Makarova, Kira S.
    Haft, Daniel H.
    Barrangou, Rodolphe
    Brouns, Stan J. J.
    Charpentier, Emmanuelle
    Horvath, Philippe
    Moineau, Sylvain
    Mojica, Francisco J. M.
    Wolf, Yuri I.
    Yakunin, Alexander F.
    van der Oost, John
    Koonin, Eugene V.
    NATURE REVIEWS MICROBIOLOGY, 2011, 9 (06) : 467 - 477
  • [33] Classification and Nomenclature of CRISPR-Cas Systems: Where from Here?
    Makarova, Kira S.
    Wolf, Yuri I.
    Koonin, Eugene V.
    CRISPR JOURNAL, 2018, 1 (05): : 325 - 336
  • [34] CRISPR-Cas System for RNA Detection and Imaging
    Chen Siyu
    Wang Rujia
    Lei Chunyang
    Nie Zhou
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (02) : 157 - 163
  • [35] Recruitment of Reverse Transcriptase-Cas1 Fusion Proteins by Type VI-A CRISPR-Cas Systems
    Toro, Nicolas
    Rodriguez Mestre, Mario
    Martinez-Abarca, Francisco
    Gonzalez-Delgado, Alejandro
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [36] Programmable type III-A CRISPR-Cas DNA targeting modules
    Ichikawa, H. Travis
    Cooper, John C.
    Lo, Leja
    Potter, Jason
    Terns, Rebecca M.
    Terns, Michael P.
    PLOS ONE, 2017, 12 (04):
  • [37] Adaptation in CRISPR-Cas Systems
    Sternberg, Samuel H.
    Richter, Hagen
    Charpentier, Emmanuelle
    Qimron, Udi
    MOLECULAR CELL, 2016, 61 (06) : 797 - 808
  • [38] DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes
    Plagens, Andre
    Richter, Hagen
    Charpentier, Emmanuelle
    Randau, Lennart
    FEMS MICROBIOLOGY REVIEWS, 2015, 39 (03) : 442 - 463
  • [39] Targeted RNA Knockdown by a Type III CRISPR-Cas Complex in Zebrafish
    Fricke, Thomas
    Smalakyte, Dalia
    Lapinski, Maciej
    Pateria, Abhishek
    Weige, Charles
    Pastor, Michal
    Kolano, Agnieszka
    Winata, Cecilia
    Siksnys, Virginijus
    Tamulaitis, Gintautas
    Bochtler, Matthias
    CRISPR JOURNAL, 2020, 3 (04): : 299 - 313
  • [40] Programmable RNA targeting with CRISPR-Cas13
    Shi, Peiguo
    Wu, Xuebing
    RNA BIOLOGY, 2024, 21 (01) : 1 - 9