Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems

被引:245
作者
O'Connell, Mitchell R. [1 ,2 ]
机构
[1] Univ Rochester, Sch Med & Dent, Dept Biochem & Biophys, Rochester, NY 14642 USA
[2] Univ Rochester, Ctr RNA Biol, Rochester, NY 14642 USA
关键词
CRISPR-Cas immunity; Type VI CRISPR-Cas systems; Cas13; C2c2; NUCLEIC-ACID DETECTION; CRYSTAL-STRUCTURE; ADAPTIVE IMMUNITY; CLEAVAGE; BINDING; DNA; PROTEIN; EVOLUTION; REVEALS; DEFENSE;
D O I
10.1016/j.jmb.2018.06.029
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prokaryotic adaptive immune systems use Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins for RNA-guided cleavage of foreign genetic elements. The focus of this review, Type VI CRISPR-Cas systems, contain a single protein, Cas13 (formerly C2c2) that when assembled with a CRISPR-RNA (crRNA) forms a crRNA-guided RNA-targeting effector complex. Type VI CRISPR-Cas systems can be divided into four subtypes (A-D) based on Cas13 phylogeny. All Cas13 proteins studied to date possess two enzymatically distinct ribonuclease activities that are required for optimal interference. One RNase is responsible for pre-crRNA processing to form mature Type VI interference complexes, while the other RNase activity provided by the two Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, is required for degradation of target-RNA during viral interference. In this review, I will compare and contrast what is known about the molecular architecture and behavior of Type VI (A-D) CRISPR Cas13 interference complexes, how this allows them to carry out their RNA-targeting function, how Type VI accessory proteins are able to modulate Cas13 activity, and how together all of these features have led to the rapid development of a range of RNA-targeting applications. Throughout I will also discuss some of the outstanding questions regarding Cas13's molecular behavior, and its role in bacterial adaptive immunity and RNA-targeting applications. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:66 / 87
页数:22
相关论文
共 102 条
[61]   Evolution and classification of the CRISPR-Cas systems [J].
Makarova, Kira S. ;
Haft, Daniel H. ;
Barrangou, Rodolphe ;
Brouns, Stan J. J. ;
Charpentier, Emmanuelle ;
Horvath, Philippe ;
Moineau, Sylvain ;
Mojica, Francisco J. M. ;
Wolf, Yuri I. ;
Yakunin, Alexander F. ;
van der Oost, John ;
Koonin, Eugene V. .
NATURE REVIEWS MICROBIOLOGY, 2011, 9 (06) :467-477
[62]   Self versus non-self discrimination during CRISPR RNA-directed immunity [J].
Marraffini, Luciano A. ;
Sontheimer, Erik J. .
NATURE, 2010, 463 (7280) :568-U194
[63]   Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems [J].
Mohanraju, Prarthana ;
Makarova, Kira S. ;
Zetsche, Bernd ;
Zhang, Feng ;
Koonin, Eugene V. ;
van der Oost, John .
SCIENCE, 2016, 353 (6299)
[64]   Short motif sequences determine the targets of the prokaryotic CRISPR defence system [J].
Mojica, F. J. M. ;
Diez-Villasenor, C. ;
Garcia-Martinez, J. ;
Almendros, C. .
MICROBIOLOGY-SGM, 2009, 155 :733-740
[65]   Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements [J].
Mojica, FJM ;
Díez-Villaseñor, C ;
García-Martínez, J ;
Soria, E .
JOURNAL OF MOLECULAR EVOLUTION, 2005, 60 (02) :174-182
[66]   Programmable RNA Tracking in Live Cells with CRISPR/Cas9 [J].
Nelles, David A. ;
Fang, Mark Y. ;
O'Connell, Mitchell R. ;
Xu, Jia L. ;
Markmiller, Sebastian J. ;
Doudna, Jennifer A. ;
Yeo, Gene W. .
CELL, 2016, 165 (02) :488-496
[67]   Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers [J].
Niewoehner, Ole ;
Garcia-Doval, Carmela ;
Rostol, Jakob T. ;
Berk, Christian ;
Schwede, Frank ;
Bigler, Laurent ;
Hall, Jonathan ;
Marraffini, Luciano A. ;
Jinek, Martin .
NATURE, 2017, 548 (7669) :543-+
[68]   Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6 [J].
Niewoehner, Ole ;
Jinek, Martin .
RNA, 2016, 22 (03) :318-329
[69]   Programmable RNA recognition and cleavage by CRISPR/Cas9 [J].
O'Connell, Mitchell R. ;
Oakes, Benjamin L. ;
Sternberg, Samuel H. ;
East-Seletsky, Alexandra ;
Kaplan, Matias ;
Doudna, Jennifer A. .
NATURE, 2014, 516 (7530) :263-+
[70]   CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies [J].
Pourcel, C ;
Salvignol, G ;
Vergnaud, G .
MICROBIOLOGY-SGM, 2005, 151 :653-663