Adiabatic interaction of N ultrashort solitons:: Universality of the complex Toda chain model -: art. no. 056617

被引:31
作者
Gerdjikov, VS [1 ]
Doktorov, EV
Yang, J
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria
[2] BI Stepanov Phys Inst, Minsk 220072, BELARUS
[3] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.64.056617
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the Karpman-Solov'ev method we deride the equations for the two-soliton adiabatic interaction for solitons of the modified nonlinear Schrodinger equation (MNSE). Then we generalize these equations to the case of N interacting solitons with almost equal velocities and widths. On the basis of this result we prove that the N MNSE-soliton train interaction (N>2) can be modeled by the completely integrable complex Toda chain (CTC). This is an argument in favor of universality of the complex Toda chain that was previously shown to model the soliton train interaction for nonlinear Schrodinger solitons. The integrability of the CTC is used to describe all possible dynamical regimes of the N-soliton trains that include asymptotically free propagation of all N solitons, N-soliton bound states, various mixed regimes, etc. It allows also to describe analytically the manifolds in the 4N-dimensional space of initial soliton parameters that are responsible for each of the regimes mentioned above. We compare the results of the CTC model with the numerical solutions of the MNSE for two and three-soliton interactions and find a very good agreement.
引用
收藏
页数:15
相关论文
共 53 条
[1]   Evolution of femtosecond solitons in a cubic medium with a two-component relaxing nonlinearity [J].
Afanas'ev, AA ;
Doktorov, EV ;
Vlasov, RA ;
Volkov, VM .
OPTICS COMMUNICATIONS, 1998, 153 (1-3) :83-89
[2]  
Agrawal G, 1989, Nonlinear Fiber Optics
[3]   NON-LINEAR ASYMMETRIC SELF-PHASE MODULATION AND SELF-STEEPENING OF PULSES IN LONG OPTICAL-WAVEGUIDES [J].
ANDERSON, D ;
LISAK, M .
PHYSICAL REVIEW A, 1983, 27 (03) :1393-1398
[4]  
[Anonymous], 1977, SOV PHYS JETP
[5]   Stability of solitary wave trains in Hamiltonian wave systems [J].
Arnold, JM .
PHYSICAL REVIEW E, 1999, 60 (01) :979-986
[6]   Complex Toda lattice and its application to the theory of interacting optical solitons [J].
Arnold, JM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (05) :1450-1458
[7]  
ARNOLD JM, 1995, URL P URSI EL THEOR
[8]   EXPLICIT N-SOLITON SOLUTION OF THE MODIFIED NONLINEAR SCHRODINGER-EQUATION [J].
CHEN, ZY ;
HUANG, NN .
PHYSICAL REVIEW A, 1990, 41 (07) :4066-4069
[9]   Polarized femtosecond optical solitons in cubic media [J].
Doktorov, EV ;
Sakovich, SY ;
Vlasov, RA .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (04) :876-878
[10]   MODIFIED NONLINEAR SCHRODINGER-EQUATION - SPECTRAL TRANSFORM AND N-SOLITON SOLUTION [J].
DOKTOROV, EV ;
SHCHESNOVICH, VS .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (12) :7009-7023