Electronic structure investigation of Ti3AlC2, Ti3SiC2, and Ti3GeC2 by soft x-ray emission spectroscopy -: art. no. 245101

被引:63
|
作者
Magnuson, M
Palmquist, JP
Mattesini, M
Li, S
Ahuja, R
Eriksson, O
Emmerlich, J
Wilhelmsson, O
Eklund, P
Högberg, H
Hultman, L
Jansson, U
机构
[1] Uppsala Univ, Dept Phys, S-75121 Uppsala, Sweden
[2] Uppsala Univ, Angstrom Lab, Dept Chem Mat, SE-75121 Uppsala, Sweden
[3] Linkoping Univ, Dept Phys, IFM, Thin Film Phys Div, SE-58183 Linkoping, Sweden
[4] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain
关键词
D O I
10.1103/PhysRevB.72.245101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electronic structures of epitaxially grown films of Ti3AlC2, Ti3SiC2, and Ti3GeC2 have been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured high-resolution Ti L, C K, Al L, Si L, and Ge M emission spectra are compared with ab initio density-functional theory including core-to-valence dipole matrix elements. A qualitative agreement between experiment and theory is obtained. A weak covalent Ti-Al bond is manifested by a pronounced shoulder in the Ti L emission of Ti3AlC2. As Al is replaced with Si or Ge, the shoulder disappears. For the buried Al and Si layers, strongly hybridized spectral shapes are detected in Ti3AlC2 and Ti3SiC2, respectively. As a result of relaxation of the crystal structure and the increased charge-transfer from Ti to C, the Ti-C bonding is strengthened. The differences between the electronic structures are discussed in relation to the bonding in the nanolaminates and the corresponding change of materials properties.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Electronic structure of Ti3SiC2
    Ahuja, R
    Eriksson, O
    Wills, JM
    Johansson, B
    APPLIED PHYSICS LETTERS, 2000, 76 (16) : 2226 - 2228
  • [22] On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with pure sodium at 550 °C and 750 °C
    Bentzel, G. W.
    Ghidiu, M.
    Griggs, J.
    Lang, A.
    Barsoum, M. W.
    CORROSION SCIENCE, 2016, 111 : 568 - 573
  • [23] Radiation tolerance of Mn+1AXn phases, Ti3AlC2 and Ti3SiC2
    Whittle, K. R.
    Blackford, M. G.
    Aughterson, R. D.
    Moricca, S.
    Lumpkin, G. R.
    Riley, D. P.
    Zaluzec, N. J.
    ACTA MATERIALIA, 2010, 58 (13) : 4362 - 4368
  • [24] Influence of proton-irradiation temperature on the damage accumulation in Ti3SiC2 and Ti3AlC2
    Ward, Joseph
    Bowden, David
    Stewart, David
    Barsoum, Michel W.
    Frankel, Philipp
    Preuss, Michael
    SCRIPTA MATERIALIA, 2019, 165 : 98 - 102
  • [25] Ab initio investigation on the phase stability of Ti3SiC2, Ti3Si0.5Ge0.5C2, and Ti3GeC2 at high pressures
    Ahuja, R.
    Sun, Z.
    Luo, W.
    HIGH PRESSURE RESEARCH, 2006, 26 (02) : 127 - 130
  • [26] On the interactions of Ti2AlC, Ti3AlC2, Ti3SiC2 and Cr2AlC with silicon carbide and pyrolytic carbon at 1300 °C
    Bentzel, G. W.
    Ghidiu, M.
    Anasori, B.
    Barsoum, M. W.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (15) : 4107 - 4114
  • [27] Anisotropy and thermopower in Ti3SiC2 -: art. no. 121104
    Chaput, L
    Hug, G
    Pécheur, P
    Scherrer, H
    PHYSICAL REVIEW B, 2005, 71 (12)
  • [28] Investigations on Radiation Tolerance of Mn+1AXn Phases: Study of Ti3SiC2, Ti3AlC2, Cr2AlC, Cr2GeC, Ti2AlC, and Ti2AlN
    Xiao, Jingren
    Yang, Tengfei
    Wang, Chenxu
    Xue, Jianming
    Wang, Yugang
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2015, 98 (04) : 1323 - 1331
  • [29] Native point defects in Ti3GeC2 and Ti2GeC
    Assadi, M. H. N.
    Katayama-Yoshida, H.
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 128 : 103 - 108
  • [30] Corrosion performance of Ti3SiC2, Ti3AlC2, Ti2AlC and Cr2AlC MAX phases in simulated primary water conditions
    Ward, Joseph
    Bowden, David
    Prestat, Eric
    Holdsworth, Sam
    Stewart, David
    Barsoum, Michel W.
    Preuss, Michael
    Frankel, Philipp
    CORROSION SCIENCE, 2018, 139 : 444 - 453