Experimental investigation of thermal performance for direct absorption solar parabolic trough collector (DASPTC) based on binary nanofluids

被引:98
|
作者
Menbari, Amir [1 ]
Alemrajabi, Ali Akbar [1 ]
Rezaei, Amin [1 ]
机构
[1] Isfahan Univ Technol, Dept Mech Engn, Esfahan 8415683111, Iran
关键词
Binary nanofluid; Direct absorption; Thermal conductivity; Thermal efficiency; PHASE-CHANGE MATERIAL; EXTINCTION COEFFICIENT; OPTICAL-PROPERTIES; CONDUCTIVITY; VISCOSITY; STABILITY; OIL; AGGREGATION; ENHANCEMENT; DISPERSIONS;
D O I
10.1016/j.expthermflusci.2016.08.023
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanofluids can be utilized to capture and distribute effectively solar radiation due to the capability of their nanoparticles in the liquid medium to scatter and absorb solar radiation. Hence, nanofluid-based solar collectors have the potential to harness solar radiant energy. Proper nanofluids can be selected for solar applications based on their potential optical properties. Binary nanofluids as a new class of nanofluids comprising a base fluid and two different nanoparticles may exhibit a behavior different from any of their components. The behavior of such nanofluids has not yet been extensively investigated. The present experimental study was, therefore, designed and implemented to investigate the absorption and thermal conductivity of binary nanofluids and to evaluate the factors involved in their optimal stability. For this purpose, two dissimilar nanoparticles, i.e. CuO (with high absorption properties) and gamma-Al2O3 (with high scattering properties) were chosen to prepare a binary nanofluid. Results showed that the thermal conductivity and aggregation of the prepared nanofluid were highest and lowest, respectively, under optimal stability conditions. As another main goal of this study, the effect of the binary nanofluid on the thermal efficiency of direct absorption solar parabolic trough collectors (DASPTCs) was evaluated. Results showed that solar irradiance is absorbed and converted into a significant amount of sensible heat along the length of the receiver pipe. Experiments with the DASTPC collector also revealed that the thermal efficiency of the system could be enhanced by increasing nanoparticle volume fraction and nanofluid flow rate. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 227
页数:10
相关论文
共 50 条
  • [1] Performance analysis of direct absorption-based parabolic trough solar collector using hybrid nanofluids
    Khalil, Atisham
    Amjad, Muhammad
    Noor, Fahad
    Hussain, Amjad
    Nawaz, Saad
    Bandarra Filho, Enio P.
    Du, Xiaoze
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [2] Performance analysis of direct absorption-based parabolic trough solar collector using hybrid nanofluids
    Atisham Khalil
    Muhammad Amjad
    Fahad Noor
    Amjad Hussain
    Saad Nawaz
    Enio P. Bandarra Filho
    Xiaoze Du
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42
  • [3] Experimental analysis of thermal performance of direct absorption parabolic trough collector integrating water based nanofluids for sustainable environment applications
    Raza, Syed Husnain
    Qamar, Adnan
    Noor, Fahad
    Riaz, Fahid
    Usman, Muhammad
    Farooq, Muhammad
    Sultan, M.
    Rehman, Ateekh Ur
    Shahzadi, Anam
    Andresen, John M.
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 49
  • [4] Numerical investigation on the thermal performance of parabolic trough solar collector with synthetic oil/Cu nanofluids
    Dou, Lizhuang
    Ding, Bin
    Zhang, Qiang
    Kou, Guiyue
    Mu, Mingfei
    APPLIED THERMAL ENGINEERING, 2023, 227
  • [5] EXPERIMENTAL INVESTIGATION ON SOLAR THERMAL PROPERTIES OF MAGNETIC NANOFLUIDS FOR DIRECT ABSORPTION SOLAR COLLECTOR
    He, Qinbo
    Yan, Geni
    Wang, shuangfeng
    PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, 2016, VOL 1, 2016,
  • [6] Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids
    Qin, Caiyan
    Kim, Joong Bae
    Lee, Bong Jae
    RENEWABLE ENERGY, 2019, 143 : 24 - 33
  • [7] Thermal performance enhancement of nanofluids based parabolic trough solar collector (NPTSC) for sustainable environment
    Farooq, M.
    Farhan, M.
    Ahmad, Gulzar
    Tahir, Zia ul Rehman
    Usman, M.
    Sultan, M.
    Hanif, M. Saad
    Imran, M.
    Anwar, Saqib
    El-Sherbeeny, Ahmed M.
    Shakir, M. Ali
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (11) : 8943 - 8953
  • [8] Experimental investigation of an asymmetric compound parabolic concentrator–based direct absorption solar collector using plasmonic nanofluids
    Parminder Singh
    Sanjay Kumar
    Nikhil Chander
    Ashok Kumar Bagha
    Environmental Science and Pollution Research, 2023, 30 : 60383 - 60398
  • [9] Improving environmental performance of a direct absorption parabolic trough collector by using hybrid nanofluids
    Mashhadian, Amirarsalan
    Heyhat, Mohammad Mahdi
    Mahian, Omid
    ENERGY CONVERSION AND MANAGEMENT, 2021, 244
  • [10] Experimental investigation on a parabolic trough solar collector for thermal power generation
    Liu QiBin
    Wang YaLong
    Gao ZhiChao
    Sui Jun
    Jin HongGuang
    Li HePing
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2010, 53 (01) : 52 - 56