A Ramsey Theorem with an Application to Sequences in Banach Spaces
被引:0
|
作者:
Service, Robert
论文数: 0引用数: 0
h-index: 0
机构:
Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, FinlandUniv Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
Service, Robert
[1
]
机构:
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
来源:
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES
|
2012年
/
55卷
/
02期
关键词:
Banach spaces;
Ramsey theory;
D O I:
10.4153/CMB-2011-073-5
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The notion of a maximally conditional sequence is introduced for sequences in a Banach space. It is then proved using Ramsey theory that every basic sequence in a Banach space has a subsequence which is either an unconditional basic sequence or a maximally conditional sequence. An apparently novel, purely combinatorial lemma in the spirit of Galvin's theorem is used in the proof. An alternative proof of the dichotomy result for sequences in Banach spaces is also sketched, using the Galvin-Prikry theorem.